On a class of polyhedra with symmetrical vertex stars
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 88-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of the local symmetry of stars of some vertices of a closed convex polyhedron in $E^3$ on its geometry is considered. A theorem on the complete classification of symmetric polyhedra some of whose vertices possess symmetric stars od deltoid or rhombic faces is proved. In the proof, we use so-called strongly symmetric polyhedra and the lemma on local symmetry conditions previously introduced by the author.
Keywords: convex polyhedron, vertex star, strongly symmetric polyhedron, $FS$-polyhedron, deltoid vertex, $RDS$-polyhedron.
Mots-clés : rhombic vertex
@article{INTO_2019_169_a10,
     author = {V. I. Subbotin},
     title = {On a class of polyhedra with symmetrical vertex stars},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--97},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a10/}
}
TY  - JOUR
AU  - V. I. Subbotin
TI  - On a class of polyhedra with symmetrical vertex stars
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 88
EP  - 97
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a10/
LA  - ru
ID  - INTO_2019_169_a10
ER  - 
%0 Journal Article
%A V. I. Subbotin
%T On a class of polyhedra with symmetrical vertex stars
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 88-97
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a10/
%G ru
%F INTO_2019_169_a10
V. I. Subbotin. On a class of polyhedra with symmetrical vertex stars. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 88-97. http://geodesic.mathdoc.fr/item/INTO_2019_169_a10/

[1] Deza M., Grishukhin V. P., Shtogrin A. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007

[2] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauchn. sem. LOMI., 2 (1967), 1–220

[3] Subbotin V. I., “Ob odnom klasse silno simmetrichnykh mnogogrannikov”, Chebyshev. sb., 2016, no. 4, 132–140 | Zbl

[4] Subbotin V. I., “O nekotorykh obobscheniyakh silno simmetrichnykh mnogogrannikov”, Chebyshev. sb., 2015, no. 2, 222–230 | Zbl

[5] Subbotin V. I., “Silno simmetrichnye mnogogranniki”, Zap. nauch. seminarov POMI., 299 (2003), 314–325

[6] Coxeter H. S. M., Regular Polytopes, Dover, N.Y., 1973 | MR

[7] Coxeter H. S. M., “Regular and semi-regular polytopes. III”, Math. Z., 200:21 (1988), 3–45 | DOI | MR | Zbl

[8] Cromwell P. R., Polyhedra, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[9] Farris S. L., “Completely classifying all vertex-transitive and edge-transitive polyhedra”, Geom. Dedic., 26:1 (1988), 111–124 | DOI | MR | Zbl

[10] Grunbaum B., “Regular polyhedra-old and new”, Aequat. Math., 16:1–2 (1977), 1–20 | DOI | MR | Zbl

[11] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl

[12] Wills J. M., “On polyhedra with transitivity properties”, Discr. Comput. Geom., 1:3 (1986), 195–199 | DOI | MR | Zbl

[13] Ziegler G. M., Lectures on Polytopes, Springer-Verlag, N.Y., 1995 | MR | Zbl