Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider second-order quasilinear differential equations in a separable Hilbert space for which the well-known Landau–Hopf scenario of transition to turbulence can be realized. We prove increasing of the control parameter leads to the consequtive appearance of invariant tori of increasing dimensions. In this case, the invariant torus of the largest possible dimension appears to be attractive. The results are obtained by using methods of the qualitative theory of dynamical systems with an infinite-dimensional space of initial conditions: the method of integral manifolds, the theory of normal forms, and also asymptotic methods of analysis of dynamical systems.
Keywords: quasilinear differential equation, Hilbert space, stability, normal form, Landau–Hopf scenario.
Mots-clés : bifurcation
@article{INTO_2019_168_a5,
     author = {A. N. Kulikov},
     title = {Bifurcations of invariant tori in second-order quasilinear evolution equations in {Hilbert} spaces and scenarios of transition to turbulence},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {168},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/}
}
TY  - JOUR
AU  - A. N. Kulikov
TI  - Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 45
EP  - 52
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/
LA  - ru
ID  - INTO_2019_168_a5
ER  - 
%0 Journal Article
%A A. N. Kulikov
%T Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 45-52
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/
%G ru
%F INTO_2019_168_a5
A. N. Kulikov. Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 45-52. http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/

[1] Brur Kh. V., Dyumorte F., van Strin S., Takens F., Struktury v dinamike, In-t komp. issled., M.–Izhevsk, 2003

[2] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[3] Kokuikin E. S., Kulikov A. N., “Tsikly i tory delovoi aktivnosti v odnoi matematicheskoi modeli makroekonomiki”, Model. anal. inform. sistem., 16:4 (2009), 86–95

[4] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR | Zbl

[5] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie tora pri vozmuscheniyax”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl

[6] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Razvitie turbulentnosti po Landau v modeli «multiplikator-akselrator»”, Dokl. RAN., 42:6 (2008), 739–743

[7] Kulikov A. N., “Attraktory dvukh kraevykh zadach dlya modifitsirovannogo telegrafnogo uravneniya”, Nelin. dinam., 4:1 (2008), 56–67

[8] Kulikov A. N., “Vozmozhnost realizatsii stsenariya Landau perekhoda k turbulentnosti v zadache o kolebaniyakh truby, transportiruyuschei zhidkost”, Tr. VIII Vseross. konf. «Nelineinye kolebaniya mekhanicheskikh sistem», v. 2, N. Novgorod, 2008, 378–380

[9] Kulikov A. N., “O vozmozhnosti realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v dvukh zadachakh teorii uprugoi ustoichivosti”, Differ. uravn., 47:2 (2011), 296–298

[10] Kulikov A. N., “O realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v nekotorykh zadachakh teorii uprugoi ustoichivosti”, Differ. uravn., 48:9 (2012), 1278–1291 | Zbl

[11] Landau L. D., “K problemam turbulentnosti”, Dokl. AN SSSR., 44:8 (1944), 339–342

[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1988 | MR

[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Leningr. un-ta, 1950 | MR

[14] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–350

[15] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniyakh”, Tr. Mosk. mat. o-va., 22 (1970), 37–60

[16] Holmes P. J., Marsden J. E., “Bifurcation of dynamical systems and nonlinear oscillations in engineering systmes”, Lect. Notes Math., 648, Springer-Verlag, Berlin, 1978, 165–206 | MR

[17] Hopf E., “A mathematical example displaying the features of turbulence”, Commun. Pure Appl. Math., 1948, no. 1, 303–322 | DOI | MR | Zbl