Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_168_a5, author = {A. N. Kulikov}, title = {Bifurcations of invariant tori in second-order quasilinear evolution equations in {Hilbert} spaces and scenarios of transition to turbulence}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {45--52}, publisher = {mathdoc}, volume = {168}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/} }
TY - JOUR AU - A. N. Kulikov TI - Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 45 EP - 52 VL - 168 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/ LA - ru ID - INTO_2019_168_a5 ER -
%0 Journal Article %A A. N. Kulikov %T Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 45-52 %V 168 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/ %G ru %F INTO_2019_168_a5
A. N. Kulikov. Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 45-52. http://geodesic.mathdoc.fr/item/INTO_2019_168_a5/
[1] Brur Kh. V., Dyumorte F., van Strin S., Takens F., Struktury v dinamike, In-t komp. issled., M.–Izhevsk, 2003
[2] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[3] Kokuikin E. S., Kulikov A. N., “Tsikly i tory delovoi aktivnosti v odnoi matematicheskoi modeli makroekonomiki”, Model. anal. inform. sistem., 16:4 (2009), 86–95
[4] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR | Zbl
[5] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie tora pri vozmuscheniyax”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl
[6] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Razvitie turbulentnosti po Landau v modeli «multiplikator-akselrator»”, Dokl. RAN., 42:6 (2008), 739–743
[7] Kulikov A. N., “Attraktory dvukh kraevykh zadach dlya modifitsirovannogo telegrafnogo uravneniya”, Nelin. dinam., 4:1 (2008), 56–67
[8] Kulikov A. N., “Vozmozhnost realizatsii stsenariya Landau perekhoda k turbulentnosti v zadache o kolebaniyakh truby, transportiruyuschei zhidkost”, Tr. VIII Vseross. konf. «Nelineinye kolebaniya mekhanicheskikh sistem», v. 2, N. Novgorod, 2008, 378–380
[9] Kulikov A. N., “O vozmozhnosti realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v dvukh zadachakh teorii uprugoi ustoichivosti”, Differ. uravn., 47:2 (2011), 296–298
[10] Kulikov A. N., “O realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v nekotorykh zadachakh teorii uprugoi ustoichivosti”, Differ. uravn., 48:9 (2012), 1278–1291 | Zbl
[11] Landau L. D., “K problemam turbulentnosti”, Dokl. AN SSSR., 44:8 (1944), 339–342
[12] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 6. Gidrodinamika, Nauka, M., 1988 | MR
[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Leningr. un-ta, 1950 | MR
[14] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1967), 297–350
[15] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniyakh”, Tr. Mosk. mat. o-va., 22 (1970), 37–60
[16] Holmes P. J., Marsden J. E., “Bifurcation of dynamical systems and nonlinear oscillations in engineering systmes”, Lect. Notes Math., 648, Springer-Verlag, Berlin, 1978, 165–206 | MR
[17] Hopf E., “A mathematical example displaying the features of turbulence”, Commun. Pure Appl. Math., 1948, no. 1, 303–322 | DOI | MR | Zbl