Bifurcations of solutions to equations with deviating spatial arguments
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A periodic boundary-value problem for an equation with deviating spatial argument is considered. This equation describes the phase of a light wave in light resonators with distributed feedback. Optical systems of this type are used in computer technologies and in the study of laser beams. The boundary-value problem was considered for two values of spatial deviations. In the work, bifurcation problems of codimensions $1$ and $2$ were analyzed by various methods of studying dynamical systems, for example, the method of normal Poincaré–Dulac forms, the method of integral manifolds, and asymptotic formulas. The problem on the stability of certain homogeneous equilibrium states is examined. Asymptotic formulas for spatially inhomogeneous solutions and conditions for their stability are obtained.
Keywords: functional-differential equation, periodic boundary-value problem, stability, asymptotics, light resonator.
Mots-clés : bifurcation
@article{INTO_2019_168_a4,
     author = {A. M. Kovaleva},
     title = {Bifurcations of solutions to equations with deviating spatial arguments},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {168},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a4/}
}
TY  - JOUR
AU  - A. M. Kovaleva
TI  - Bifurcations of solutions to equations with deviating spatial arguments
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 33
EP  - 44
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_168_a4/
LA  - ru
ID  - INTO_2019_168_a4
ER  - 
%0 Journal Article
%A A. M. Kovaleva
%T Bifurcations of solutions to equations with deviating spatial arguments
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 33-44
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_168_a4/
%G ru
%F INTO_2019_168_a4
A. M. Kovaleva. Bifurcations of solutions to equations with deviating spatial arguments. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 33-44. http://geodesic.mathdoc.fr/item/INTO_2019_168_a4/

[1] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issled., M.–Izhevsk, 2002

[2] Kaschenko S. A., “Asimptotika prostranstvenno neodnorodnykh struktur v kogerentnykh opticheskikh sistemakh”, Zh. vychisl. mat. mat. fiz., 31:3 (1991), 467–473 | MR

[3] Kaschenko I. S., Kaschenko S. A., “Bystro ostsilliruyuschie prostranstvenno neodnorodnye struktury v kogerentnykh nelineino-opticheskikh sistemakh”, Dokl. RAN., 435:1 (2010), 14–17 | MR

[4] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, YarGU, Yaroslavl, 2005

[5] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl

[6] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[7] Krein C. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[8] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1976, 114–129

[9] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980

[10] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR

[11] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. mat. mat. fiz., 33:1 (1993), 69–80 | MR | Zbl

[12] Skubachevskii A. L., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differ. uravn., 34:10 (1998), 1394–1401 | MR | Zbl

[13] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. ob-va., 10 (1967), 297–350