Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_168_a2, author = {I. M. Burkin and O. I. Kuznetsova}, title = {An approach to generating extremely multistable chaotic systems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {15--25}, publisher = {mathdoc}, volume = {168}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a2/} }
TY - JOUR AU - I. M. Burkin AU - O. I. Kuznetsova TI - An approach to generating extremely multistable chaotic systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 15 EP - 25 VL - 168 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_168_a2/ LA - ru ID - INTO_2019_168_a2 ER -
%0 Journal Article %A I. M. Burkin %A O. I. Kuznetsova %T An approach to generating extremely multistable chaotic systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 15-25 %V 168 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_168_a2/ %G ru %F INTO_2019_168_a2
I. M. Burkin; O. I. Kuznetsova. An approach to generating extremely multistable chaotic systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 15-25. http://geodesic.mathdoc.fr/item/INTO_2019_168_a2/
[1] Burkin I. M., “Skrytye attraktory nekotorykh multistabilnykh sistem s beskonechnym chislom sostoyanii ravnovesiya”, Chebyshev. sb., 18:4 (2017), 127–138 | DOI | MR
[2] Leonov G. A., Teoriya upravleniya, Izd-vo S.-Peterb. un-ta, 2006
[3] Arecchi F. T., Meucci R., Puccioni G., Tredicce J., “Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser”, Phys. Rev. Lett., 49:17 (1982), 12–17 | DOI
[4] Bao B., Li Q., Wang N., Xu Q., “Multistability in Chua’s circuit with two stable node-foci”, Chaos., 26:4 (2016), 043111 | DOI | MR
[5] Burkin I. M., Nguen N. K, “Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems”, Diff. Equations., 50 (2014), 1695–1717 | DOI | MR | Zbl
[6] Bragin V. O., Vagaitsev V. I., Kuznetsov N. V., Leonov G. A., “Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits”, J. Comput. Syst. Sci. Int., 50:4 (2011), 511–543 | DOI | MR | Zbl
[7] Cicek S., Ferikoglu A., Pehlivan I., “A new 3D chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application”, Optik., 2016, no. 127, 4024–4030 | DOI
[8] Dudkowskia D., Jafari S., Kapitaniak T., Kuznetsov N. V., Leonov G. A., “Hidden attractors in dynamical systems”, Phys. Rep., 2016, no. 637, 1–50 | DOI | MR
[9] Komarov A., Leblond H., Sanchez F., “Multistability and hysteresis phenomena in passively mode-locked fiber lasers”, Phys. Rev., 71:5 (2005), 053809 | DOI
[10] Kuznetsov N. V., “Hidden attractors in fundamental problems and engineering models. A short survey”, Lect. Notes Electr. Eng., 2016, no. 371, 13–25 | DOI | MR
[11] Lai Q., Chen S., “Research on a new 3-D autonomous chaotic system with coexisting attractors”, Optik., 2016, no. 127, 3000–-3004 | DOI | MR
[12] Lai Q., Chen S., “Generating multiple chaotic attractors from Sprott B system”, Int. J. Bifurc. Chaos., 26 (2016), 21650177 | DOI | MR
[13] Laurent M., Kellershohn N., “Multistability: a major means of differentiation and evolution in biological systems”, Trends Biochem. Sci., 24:11 (1999), 418–422 | DOI
[14] Leonov G. A., Burkin I. M., Shepeljavyi A. I., Frequency Methods in Oscillation Theory, Kluwer, Amsterdam, 1996 | MR | Zbl
[15] Leonov G. A., Kuznetsov N. V, Vagaitsev V. I., “Localization of hidden Chua’s attractors”, Phys. Lett., 2011, no. 375, 2230–2233 | DOI | MR | Zbl
[16] Li C., Hu W., Sprott J. C., Wang X., “Multistability in symmetric chaotic systems”, Eur. Phys. J. Spec. Top., 2015, no. 224, 1493–-1506
[17] Li C., Sprott J. C., “Multistability in the Lorenz system: a broken buttery”, Int. J. Bifurc. Chaos., 24:10 (2014), 1450131 | DOI | MR | Zbl
[18] Li C., Sprott J. C., Hu W., Xu Y., “Infinite multistability in a self-reproducing chaotic system”, Int. J. Bifurc. Chaos., 27 (10) (2017), 1750160 | DOI | MR | Zbl
[19] Li C., Sprott J. C., Kapitaniak T., Lu T., “Infinite lattice of hyperchaotic strange attractors”, Chaos Solitons Fract., 2018, no. 109, 76–-82 | MR | Zbl
[20] Li C., Sprott J. C., Mei Y., “An invite 2-D lattice of strange attractors”, Nonlin. Dynam., 89:4 (2017), 2629–-2639 | DOI | MR
[21] Li Z., Xu D., “A secure communication scheme using projective chaos synchronization”, Chaos Solitons Fract., 22 (2004), 477–481 | MR
[22] Liu H., Kadi A., Li Y., “Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys”, Optik., 2016, no. 127, 7431–7438 | DOI
[23] Ujjwal S. R., Punetha N., Ramaswamy R., Agrawal M., Prasad A., “Driving-induced multistability in coupled chaotic oscillators: symmetries and riddled basins”, Chaos., 26 (2016), 063111 | DOI | MR | Zbl
[24] Wang G., Chen D., Lin J., Chen X., “The application of chaotic oscillators to weak signal detection”, IEEE Trans. Ind. Electron., 46 (1999), 440–444 | DOI
[25] Xu Q., Lin Y., Bao B., Chen M., “Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit”, Chaos Solitons Fract., 83 (2016), 186-–200 | MR | Zbl
[26] Ying L., Huang D., Lai Y. C., “Multistability, chaos, and random signal generation in semiconductor superlattices”, Phys. Rev. E., 93:6 (2016), 062204 | DOI | MR
[27] Zeng Z., Huang T., Zheng W., “Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function”, IEEE Trans. Neural Networks., 21:8 (2010), 1371–-1377 | DOI