Atoms and photons: kinetic equations with delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 62-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In his recent works, the author drew attention to the fact that extraction of a part of a closed Hamiltonian system turns the original well-known Liouville differential equation into an integro-differential equation with a delayed time argument, which describes the dynamics of the selected subsystem considered as an open system. It was shown that the integral operator can be represented in the form of a fractional differential operator of distributed order. In this paper, we show how the kinetic theory of the system "atoms$+$photons" is transformed for the subsystem consisting of excited atoms. We present the derivation of the telegraph equation with delay, derive the Bieberman–Holstein equation in the fractional differential form (with the fractional Laplace operator), and discuss boundary effects in the nonlocal transport model. The final section is devoted to laser technologies, which include free electron lasers and laser cooling of atoms.
Mots-clés : balance equation
Keywords: radiation trapping, frequency redistribution, telegraph equation, laser beam, fractal medium.
@article{INTO_2019_167_a7,
     author = {V. V. Uchaikin},
     title = {Atoms and photons: kinetic equations with delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {62--96},
     publisher = {mathdoc},
     volume = {167},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a7/}
}
TY  - JOUR
AU  - V. V. Uchaikin
TI  - Atoms and photons: kinetic equations with delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 62
EP  - 96
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a7/
LA  - ru
ID  - INTO_2019_167_a7
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%T Atoms and photons: kinetic equations with delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 62-96
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a7/
%G ru
%F INTO_2019_167_a7
V. V. Uchaikin. Atoms and photons: kinetic equations with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 62-96. http://geodesic.mathdoc.fr/item/INTO_2019_167_a7/

[1] Bardu F., Busho Zh. F., Aspe A., Koen-Tannudzhi K., Statistika Levi i lazernoe okhlazhdenie, Fizmatlit, M., 2005

[2] Biberman L. M., “K teorii diffuzii rezonansnogo izlucheniya”, ZhETF., 17:5 (1947), 416–426

[3] Burshtein A. I., “Kinetika indutsirovannoi relaksatsii”, ZhETF., 48:3 (1965), 850–859

[4] Golubovskii Yu. B., Kagan Yu. M., Lyaguschenko R. I., “O zaselennosti rezonansnykh urovnei v razryade tsilindricheskoi konfiguratsii”, Optika i spektroskopiya., 31:1 (1971), 22–29

[5] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965

[6] Monin A. C., “Uravneniya turbulentnoi diffuzii”, Dokl. AN SSSR., 105:2 (1955), 256–260

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[8] Uchaikin V. V., “Avtomodelnaya anomalnaya diffuziya i ustoichivye zakony”, Usp. fiz. nauk., 173:8 (2003), 847–876 | DOI

[9] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[10] Uchaikin V. V., “O drobno-differentsialnom uravnenii Liuvillya kak uravnenii dinamiki otkrytoi sistemy”, Nauch. ved. BelGU. Ser. mat. fiz., 25 (196):37 (2014), 58–67

[11] Uchaikin V. V., Zakharov A. Yu., “Drobnye proizvodnye v teorii plazmy”, Obozr. prikl. prom. mat., 12 (2005), 540

[12] Uchaikin V. V., Sibatov R. T., “Stokhasticheskaya model mertsayuschei fluorestsentsii”, ZhETF., 136:4 (10) (2009), 627–638

[13] Fok V. A., “Reshenie odnoi zadachi teorii diffuzii po metodu konechnykh raznostei i prilozhenie ego k diffuzii sveta”, Tr. GOI., 4:34 (1926), 1–31

[14] Bardou F., Bouchaud J. P., Emile O., Aspect A., Cohen-Tannoudji C., “Subrecoil laser cooling and Levy flights”, Phys. Rev. Lett., 72 (1994), 203–206 | DOI

[15] Boyadjiev L., Dobner H. J., “On a fractional integro-differential equation of Volterra type”, Integr. Transforms Special Funct., 11 (2001), 113–136 | DOI | MR | Zbl

[16] Dattoli G., Lorenzutta S., Maino G., Tocci D., Torre A., “Results for an integro-differential equation arising in a radiation evolution problem”, Proc. Int. Workshop “Dynamics of Transport in Plasmas and Charged Beams,” (Torino, July 1994), World Scientific, 1995, 202–221

[17] Dattoli G., Renieri A., Torre A., Lectures in free-electron laser theory and related topics, World Scientific, Singapore, 1995

[18] Holstein T., “Imprisonment of resonance radiation in gases”, Phys. Rev., 72 (1947), 1212–1233 | DOI | Zbl

[19] Jung Y., Barkai E., Silbey R., “Lineshape theory and photon counting statistics for blinking quantum dots: a Levy walk process”, J. Chem. Phys., 284:1–2, 181–194

[20] Kofman A. G., Zaibel R., Levine A. M., Prior Y., “Non-Markovian stochastic jump processes in nonlinear optics”, Phys. Rev. Lett., 61 (1988), 251 | DOI | MR

[21] Kondrashin M. P., Schaufler S., Schleich W. P., Yakovlev V. P., “Anomalous kinetics of heavy particles in light media”, J. Chem. Phys., 284:1–2 (2002), 319–330

[22] Kuscer I., Zweifel P. F., “Time-dependent one-speed albedo problem for a semi-infinite medium”, J. Math. Phys., 6:7 (1965), 1125–1130 | DOI | MR | Zbl

[23] Margolin G., Barkai E., “Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes”, J. Chem. Phys., 121:3 (2004), 1566–1577 | DOI

[24] Prigogine I., Resibua P., “On the kinetics of the approach to equilibrium”, Physica., 27 (1961), 629–646 | DOI | MR

[25] Schaufler S., Yakovlev V. P., “Subrecoil laser cooling: Trapping versus diffusion”, Laser Phys., 6 (1994), 414–419

[26] Tang J., Marcus R. A., “Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots”, J. Chem. Phys., 123 (2005), 054704 | DOI

[27] Uchaikin V. V., “Nonlocal models of cosmic ray transport in the Galaxy”, J. Appl. Math. Phys., 3 (2015), 187–200 | DOI

[28] Uchaikin V. V., “On time-fractional representation of an open system response”, Fract. Calc. Appl. Anal., 19:5 (2016), 1306–1315 | DOI | MR | Zbl

[29] Uchaikin V. V., Cahoy D. O., Sibatov R. T., “Fractional processes: from Poisson to branching one”, Int. J. Bifurcation Chaos., 18:9 (2008), 2717–2725 | DOI | MR | Zbl

[30] Uchaikin V. V., Sibatov R. T., “Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma”, J. Phys. A: Math. Theor., 44:14 (2011), 145501 | DOI | MR | Zbl

[31] Uchaikin V. V., Sibatov R. T., Harlova O. P., “Galaxies as accelerators of cosmic rays”, Proc. 34th Int. Conf. on Cosmic Rays (Netherlands, 2015), 532

[32] Van Hove L., “The approach to equilibrium in quantum statistics: A perturbation treatment to general order”, Physica., 23 (1957), 441–480 | DOI | MR | Zbl