Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the solvability of boundary-value problems for differential equations of the form $$ (\alpha_0(t)+\alpha_1(t)\Delta)u_{tt}-Bu_t-Cu=f(x,t), $$ where $\Delta$ is the Laplace operator acting with respect to spatial variables and $B$ and $C$ are also second-order differential acting with respect to spatial variables. A feature of the equations considered is the condition that the functions $\alpha_0(t)$ and $\alpha_1(t)$ may not possess the fixed sign property on the range $(0,T)$ of the temporal variable; in particular, the operator $\alpha_0(t)+\alpha_1(t)\Delta$ may be irreversible at any point of the interval $(0,T)$, including any strictly inner segments. For problems considered, we prove theorems on the existence and uniqueness of regular solutions (i.e., solutions possessing all generalized derivatives in the Sobolev sense).
Mots-clés : Sobolev-type equation, existence
Keywords: irreversible operator coefficient, regular solution, uniqueness.
@article{INTO_2019_167_a4,
     author = {A. I. Kozhanov},
     title = {Boundary value problems for {Sobolev} type equations with irreversible operator coefficient of the highest derivatives},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--41},
     publisher = {mathdoc},
     volume = {167},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 34
EP  - 41
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/
LA  - ru
ID  - INTO_2019_167_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 34-41
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/
%G ru
%F INTO_2019_167_a4
A. I. Kozhanov. Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 34-41. http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/

[1] Kopachevskii N. D., Integrodifferentsialnye uravneniya Volterra v gilbertovom prostranstve, Tavricheskii natsionalnyi universitet, Simferopol, 2012

[2] Korpusov M. O., Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, Librokom, M., 2011

[3] Ladyzhenskaya O. A., “Ob integralnykh otsenkakh skhodimosti priblizhennykh metodov i resheniyakh v funktsionalakh dlya lineinykh ellipticheskikh operatorov”, Vestn. LGU. Ser. mat. mekh. astron., 7:2 (1958), 60–69 | Zbl

[4] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[5] Larkin N. A., Novikov V. A., Yanenko N. N., Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR

[6] Maslov V. P., Mosolov P. P., Uravneniya odnomernogo barotropnogo gaza, Nauka, M., 1990 | MR

[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[9] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980

[10] Umarov Kh. G., Polugruppy operatorov i tochnye resheniya zadach anizotropnoi filtratsii, Fizmatlit, M., 2009 | MR

[11] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to Highest Order Derivatives, Marcel Dekker, New York, 2003 | MR

[12] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999 | MR | Zbl

[13] Hayashi N., Kaikina E. I., Naumkin P. I., Shismarev I. A., Asymptotics for Dissipative Nonlinear Equation, Springer-Verlaq, Berlin, 2006 | MR

[14] Kozhanov A. I., Composite-Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[15] Kozlov V., Maz'ya V., Differential Equation with Operator Coefficients with Applications to Boundary-Value Problems for Partial Differential Equations, Springer-Verlaq, Berlin, 1999 | MR

[16] Pyatkov S. G., Operator Theory Nonclassical Problems, VSP, Utrecht, 2003 | MR

[17] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl