Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 34-41
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the study of the solvability of boundary-value problems for differential equations of the form
$$
(\alpha_0(t)+\alpha_1(t)\Delta)u_{tt}-Bu_t-Cu=f(x,t),
$$
where $\Delta$ is the Laplace operator acting with respect to spatial variables and $B$ and $C$ are also second-order differential acting with respect to spatial variables. A feature of the equations considered is the condition that the functions $\alpha_0(t)$ and $\alpha_1(t)$ may not possess the fixed sign property on the range $(0,T)$ of the temporal variable; in particular, the operator $\alpha_0(t)+\alpha_1(t)\Delta$ may be irreversible at any point of the interval $(0,T)$, including any strictly inner segments. For problems considered, we prove theorems on the existence and uniqueness of regular solutions (i.e., solutions possessing all generalized derivatives in the Sobolev sense).
Mots-clés :
Sobolev-type equation, existence
Keywords: irreversible operator coefficient, regular solution, uniqueness.
Keywords: irreversible operator coefficient, regular solution, uniqueness.
@article{INTO_2019_167_a4,
author = {A. I. Kozhanov},
title = {Boundary value problems for {Sobolev} type equations with irreversible operator coefficient of the highest derivatives},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {34--41},
publisher = {mathdoc},
volume = {167},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/}
}
TY - JOUR AU - A. I. Kozhanov TI - Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 34 EP - 41 VL - 167 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/ LA - ru ID - INTO_2019_167_a4 ER -
%0 Journal Article %A A. I. Kozhanov %T Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 34-41 %V 167 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/ %G ru %F INTO_2019_167_a4
A. I. Kozhanov. Boundary value problems for Sobolev type equations with irreversible operator coefficient of the highest derivatives. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 34-41. http://geodesic.mathdoc.fr/item/INTO_2019_167_a4/