Boundary-value problem for the Aller--Lykov nonlocal moisture transfer equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a boundary-value problem for the inhomogeneous Aller–Lykov moisture transfer equation with a fractional Riemann–Liouville time derivative is examined. The equation considered is a generalization of the Aller–Lykov equation obtained by introducing the fractal rate of change of humidity, which explains the appearance of flows directed against the potential of humidity. The existence of a solution to the first boundary-value problem is proved by the Fourier method. Using the method of energy inequalities for solutions of the problem, we obtain an a priori estimate in terms of the fractional Riemann–Liouville derivative, which implies the uniqueness of the solution.
Keywords: Aller–Lykov moisture transfer equation, Riemann–Liouville fractional derivative, Fourier method, a priori estimate, method of energy inequalities.
@article{INTO_2019_167_a3,
     author = {S. Kh. Gekkieva and M. A. Kerefov},
     title = {Boundary-value problem for the {Aller--Lykov} nonlocal moisture transfer equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {27--33},
     publisher = {mathdoc},
     volume = {167},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a3/}
}
TY  - JOUR
AU  - S. Kh. Gekkieva
AU  - M. A. Kerefov
TI  - Boundary-value problem for the Aller--Lykov nonlocal moisture transfer equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 27
EP  - 33
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a3/
LA  - ru
ID  - INTO_2019_167_a3
ER  - 
%0 Journal Article
%A S. Kh. Gekkieva
%A M. A. Kerefov
%T Boundary-value problem for the Aller--Lykov nonlocal moisture transfer equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 27-33
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a3/
%G ru
%F INTO_2019_167_a3
S. Kh. Gekkieva; M. A. Kerefov. Boundary-value problem for the Aller--Lykov nonlocal moisture transfer equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 27-33. http://geodesic.mathdoc.fr/item/INTO_2019_167_a3/

[1] Arkhestova S. M., Shkhanukov-Lafishev M. Kh., “Raznostnye skhemy dlya uravneniya vlagoperenosa Allera—Lykova s nelokalnym usloviem”, Izv. KBNTs RAN., 2012, no. 3, 7–16

[2] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[3] Gekkieva S. Kh., “Kraevaya zadacha dlya obobschennogo uravneniya perenosa s drobnoi proizvodnoi po vremeni”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 1:1 (1994), 16–19

[4] Gekkieva S. Kh., “Pervaya kraevaya zadach dlya uravneniya vlagoperenosa Allera—Lykova s drobnoi po vremeni proizvodnoi”, Mat. Vseross. konf. «Ustoichivoe razvitie: problemy, kontseptsii, modeli», Nalchik, 2017, 99–102

[5] Gekkieva S. Kh., Kerefov M. A., “Kraevye zadachi dlya obobschennogo uravneniya vlagoperenosa”, Vestn. KRAUNTs. Fiz.-mat. nauki., 2018, no. 1 (21), 21–32 | MR

[6] Kerefov M. A., Kraevye zadachi dlya modifitsirovannogo uravneniya vlagoperenosa s drobnoi po vremeni proizvodnoi, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Nalchik, 2000

[7] Kerefov M. A., Gekkieva S. Kh., “Pervaya kraevaya zadacha dlya neodnorodnogo nelokalnogo volnovogo uravneniya”, Vestn. Buryat. gos. un-ta. Mat. inform., 2016, no. 4, 76–86 | MR

[8] Lafisheva M. M., Kerefov M. A., Dyshekova R. V., “Raznostnye skhemy dlya uravneniya vlagoperenosa Allera—Lykova s nelokalnym usloviem”, Vladikavkaz. mat. zh., 19:1 (2017), 50–58 | MR

[9] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[10] Nakhusheva V. A., Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006

[11] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[13] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976

[14] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschennoe uravnenie perenosa i drobnye proizvodnye”, Dokl. NAN Ukrainy., 1997, no. 12, 47–54 | MR

[15] Agrawal O. P., “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlin. Dynam., 29 (2002), 145–155 | DOI | MR | Zbl

[16] Masaeva O. Kh., “Uniqueness of solutions to Dirichlet problems for generalized Lavrent'ev–Bitsadze equations with a fractional derivative”, Electron. J. Differ. Eqs., 2017 (2017), 1–8 | DOI | MR

[17] Turmetov B. Kh., Torebek B. T., “On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation”, New York J. Math., 20 (2014), 1237–1251 | MR | Zbl