Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_167_a0, author = {S. N. Askhabov}, title = {Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {167}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/} }
TY - JOUR AU - S. N. Askhabov TI - Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 13 VL - 167 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/ LA - ru ID - INTO_2019_167_a0 ER -
%0 Journal Article %A S. N. Askhabov %T Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-13 %V 167 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/ %G ru %F INTO_2019_167_a0
S. N. Askhabov. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/
[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR
[2] Askhabov S. N., “Nelineinye singulyarnye integro-differentsialnye uravneniya s proizvolnym parametrom”, Mat. zametki., 103:1 (2018), 20–26 | DOI | MR | Zbl
[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[4] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR
[5] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965
[6] Knyazev P. N., Integralnye preobrazovaniya, Editorial URSS, M., 2004
[7] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959
[8] Khachatryan Kh. A., “O razreshimosti v $W_1^1(\mathbb R)$ odnogo nelineinogo integro-differentsialnogo uravneniya s nekompaktnym operatorom Gammershteina—Nemytskogo”, Algebra i analiz., 24:1 (2012), 223–247
[9] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985
[10] Brunner H., Volterra Integral Equations: An Itroduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR
[11] Gripenberg G., Londen S. O., Staffans O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl