Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_167_a0, author = {S. N. Askhabov}, title = {Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {167}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/} }
TY - JOUR AU - S. N. Askhabov TI - Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 13 VL - 167 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/ LA - ru ID - INTO_2019_167_a0 ER -
%0 Journal Article %A S. N. Askhabov %T Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-13 %V 167 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/ %G ru %F INTO_2019_167_a0
S. N. Askhabov. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/