Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 3-13
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the method of maximal monotonic (in the Browder–Minty sense) operators, we prove global theorems on the existence and uniqueness of solutions for various classes of nonlinear integro-differential equations of convolution type in real spaces $L_p$, $1, and present illustrative examples.
Keywords: positive operator, convolution operator, monotone operator, nonlinear integro-differential equation.
@article{INTO_2019_167_a0,
     author = {S. N. Askhabov},
     title = {Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     year = {2019},
     volume = {167},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 13
VL  - 167
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/
LA  - ru
ID  - INTO_2019_167_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-13
%V 167
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/
%G ru
%F INTO_2019_167_a0
S. N. Askhabov. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/

[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[2] Askhabov S. N., “Nelineinye singulyarnye integro-differentsialnye uravneniya s proizvolnym parametrom”, Mat. zametki., 103:1 (2018), 20–26 | DOI | MR | Zbl

[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[4] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR

[5] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965

[6] Knyazev P. N., Integralnye preobrazovaniya, Editorial URSS, M., 2004

[7] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959

[8] Khachatryan Kh. A., “O razreshimosti v $W_1^1(\mathbb R)$ odnogo nelineinogo integro-differentsialnogo uravneniya s nekompaktnym operatorom Gammershteina—Nemytskogo”, Algebra i analiz., 24:1 (2012), 223–247

[9] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985

[10] Brunner H., Volterra Integral Equations: An Itroduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR

[11] Gripenberg G., Londen S. O., Staffans O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl