Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of maximal monotonic (in the Browder–Minty sense) operators, we prove global theorems on the existence and uniqueness of solutions for various classes of nonlinear integro-differential equations of convolution type in real spaces $L_p$, $1$, and present illustrative examples.
Keywords: positive operator, convolution operator, monotone operator, nonlinear integro-differential equation.
@article{INTO_2019_167_a0,
     author = {S. N. Askhabov},
     title = {Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {167},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 13
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/
LA  - ru
ID  - INTO_2019_167_a0
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-13
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/
%G ru
%F INTO_2019_167_a0
S. N. Askhabov. Method of maximal monotonic operators in the theory of nonlinear integro-differential equations of convolution type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2019_167_a0/

[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009 | MR

[2] Askhabov S. N., “Nelineinye singulyarnye integro-differentsialnye uravneniya s proizvolnym parametrom”, Mat. zametki., 103:1 (2018), 20–26 | DOI | MR | Zbl

[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[4] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR

[5] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965

[6] Knyazev P. N., Integralnye preobrazovaniya, Editorial URSS, M., 2004

[7] Khardi G. Kh., Rogozinskii V. V., Ryady Fure, Fizmatgiz, M., 1959

[8] Khachatryan Kh. A., “O razreshimosti v $W_1^1(\mathbb R)$ odnogo nelineinogo integro-differentsialnogo uravneniya s nekompaktnym operatorom Gammershteina—Nemytskogo”, Algebra i analiz., 24:1 (2012), 223–247

[9] Edvards R., Ryady Fure v sovremennom izlozhenii, v. 1, Mir, M., 1985

[10] Brunner H., Volterra Integral Equations: An Itroduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017 | MR

[11] Gripenberg G., Londen S. O., Staffans O., Volterra Integral and Functional Equations, Cambridge Univ. Press, Cambridge–New York, 1990 | MR | Zbl