Variable piecewise interpolation solution of the transport equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 77-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a piecewise interpolation method of approximate solution of the transport equation based on the Newton interpolation polynomial of two variables. We transform the polynomial to the algebraic form with numerical coefficients; this leads us to a sequence of iterations, which improves the accuracy of the approximation. The method is implemented in software and numerical experiments ares performed. The possibility of generalizations to systems of partial differential equations and integro-differential equations is discussed.
Mots-clés : piecewise interpolation approximation, transport equation.
Keywords: Newton interpolation polynomial for a function of two variables, Cauchy problem for partial differential equations
@article{INTO_2019_166_a7,
     author = {Ya. E. Romm and G. A. Dzhanunts},
     title = {Variable piecewise interpolation solution of the transport equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {166},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a7/}
}
TY  - JOUR
AU  - Ya. E. Romm
AU  - G. A. Dzhanunts
TI  - Variable piecewise interpolation solution of the transport equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 77
EP  - 86
VL  - 166
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_166_a7/
LA  - ru
ID  - INTO_2019_166_a7
ER  - 
%0 Journal Article
%A Ya. E. Romm
%A G. A. Dzhanunts
%T Variable piecewise interpolation solution of the transport equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 77-86
%V 166
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_166_a7/
%G ru
%F INTO_2019_166_a7
Ya. E. Romm; G. A. Dzhanunts. Variable piecewise interpolation solution of the transport equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 77-86. http://geodesic.mathdoc.fr/item/INTO_2019_166_a7/

[1] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 2, Fizmatgiz, M., 1962 | MR

[2] Golikov A. N., Kusochno-polinomialnye skhemy vychisleniya funktsii dvukh peremennykh, chastnykh proizvodnykh i dvoinykh integralov na osnove interpolyatsionnogo polinoma Nyutona, Dep. v VINITI 20.09.2010, No 528-V2010, TGPI, Taganrog, 2010

[3] Golikov A. N., Modelirovanie elektron-fononnogo rasseyaniya v nanoprovolokakh na osnove kusochno-polinomialnogo priblizheniya funktsii dvukh peremennykh s minimizatsiei vremennoi slozhnosti, diss. na soisk. uch. step. kand. tekhn. nauk, YuFU, Taganrog, 2012

[4] Dzhanunts G. A., Romm Ya. E., “Variruemoe kusochno-interpolyatsionnoe reshenie zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii s iteratsionnym utochneniem”, Zh. vychisl. mat. mat. fiz., 57:10 (2017), 1641–1660 | DOI | MR | Zbl

[5] Zhambalova D. B., Chernyi S. G., “Metod interpolyatsionnogo profilya resheniya uravnenii perenosa”, Vestn. NGU. Ser. Inform. tekhnol., 10:1 (2012), 33–54

[6] Kalitkin N. N., Chislennye metody, Nauka, M., 1978

[7] Lebedev A. S., Chernyi S. G., Praktikum po chislennomu resheniyu uravnenii v chastnykh proizvodnykh, Izd-vo Novosib. gos. un-ta, Novosibirsk, 2000

[8] Makarov E. G., Inzhenernye raschety v Mathcad 15, Piter, SPb., 2011

[9] Rogov B. V., Mikhailovskaya M. N., “Monotonnaya vysokotochnaya kompaktnaya skhema beguschego scheta dlya kvazilineinykh uravnenii giperbolicheskogo tipa”, Mat. model., 23:12 (2011), 65–78 | Zbl

[10] Romm Ya. E., “Lokalizatsiya i ustoichivoe vychislenie nulei mnogochlena na osnove sortirovki, II”, Kibern. sist. anal., 2007, no. 2, 161–174 | MR | Zbl

[11] Romm Ya. E., Golikov A. N., Rasparallelivaemye kusochno-polinomialnye skhemy approksimatsii funktsii, proizvodnykh i vychisleniya opredelennykh integralov s povyshennoi tochnostyu, Dep. v VINITI 27.04.2010, No 230-V2010, TGPI, Taganrog, 2010

[12] Romm Ya. E., Dzhanunts G. A., Otsenki skorosti skhodimosti kusochno-interpolyatsionnogo resheniya zadachi Koshi s iteratsionnym utochneniem dlya uravneniya perenosa, DEP v VINITI 12.02.2018, No 20-V2018, Taganrog. in-t im. A. P. Chekhova, Taganrog, 2018

[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[14] Sikovskii D. F., Metody vychislitelnoi teplofiziki, Izd-vo Novosib. gos. un-ta, Novosibirsk, 2013

[15] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR

[16] Barth T. J., Deconinck H. (eds.), High-Order Methods for Computational Physics, Springer, Berlin, 1999 | MR | Zbl

[17] Biermann O., “Über näherungsweise Kubaturen”, Monats. Math. Phys., 14 (1903), 211–225 | DOI | MR | Zbl

[18] Gasca M., Sauer T., “On the history of multivariate polynomial interpolation”, J. Comput. Appl. Math., 122 (2000), 23–35 | DOI | MR | Zbl

[19] Liu X.-D., Osher S., “Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes, I”, SIAM J. Numer. Anal., 33:2 (1996), 760–779 | DOI | MR | Zbl