Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_166_a3, author = {L. N. Kurtova and N. N. Mot'kina}, title = {On types of solutions of the {Lagrange} problem}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {41--48}, publisher = {mathdoc}, volume = {166}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a3/} }
TY - JOUR AU - L. N. Kurtova AU - N. N. Mot'kina TI - On types of solutions of the Lagrange problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 41 EP - 48 VL - 166 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_166_a3/ LA - ru ID - INTO_2019_166_a3 ER -
%0 Journal Article %A L. N. Kurtova %A N. N. Mot'kina %T On types of solutions of the Lagrange problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 41-48 %V 166 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_166_a3/ %G ru %F INTO_2019_166_a3
L. N. Kurtova; N. N. Mot'kina. On types of solutions of the Lagrange problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 41-48. http://geodesic.mathdoc.fr/item/INTO_2019_166_a3/
[1] Malyshev A. V., “O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 65 (1962), 3–212
[2] Estermann T., “On Kloosterman's sum”, Mathematica., 8 (1961), 83–86 | MR | Zbl
[3] Estermann T., “A new application of the Hardy–Littlewood–Kloosterman method”, Proc. London Math. Soc., 12 (1962), 425–444 | DOI | MR | Zbl
[4] Hua Loo-Keng, Introduction to Number Theory, Springer-Verlag, Berlin–Heidelberg–New York, 1982 | MR | Zbl
[5] Kloosterman H. D., “On the representation of number in the form”, Acta Math., 49 (1926), 407–464 | DOI | MR