Rauzy fractals and their number-theoretic applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 110-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct and study Rauzy partitions of order $n$ for a certain class of Pisot numbers. These partitions are partitions of a torus into fractal sets. Moreover, the action of a certain shift of the torus on partitions introduced is reduced to rearranging the partition tiles. We obtain a number of applications of partitions introduced to the study of the corresponding shift of the torus. In particular, we prove that partition tiles are bounded-remainder sets with respect to the shift considered. In addition, we obtain a number of applications to the study of sets of positive integers that have a given ending of the greedy expansion by a linear recurrent sequence and to generalized Knuth–Matiyasevich multiplications.
Mots-clés : Rauzy partition
Keywords: numeral system, bounded remainder set, additive problem.
@article{INTO_2019_166_a10,
     author = {A. V. Shutov},
     title = {Rauzy fractals and their number-theoretic applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {166},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_166_a10/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Rauzy fractals and their number-theoretic applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 110
EP  - 119
VL  - 166
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_166_a10/
LA  - ru
ID  - INTO_2019_166_a10
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Rauzy fractals and their number-theoretic applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 110-119
%V 166
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_166_a10/
%G ru
%F INTO_2019_166_a10
A. V. Shutov. Rauzy fractals and their number-theoretic applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part II, Tome 166 (2019), pp. 110-119. http://geodesic.mathdoc.fr/item/INTO_2019_166_a10/

[1] Davletyarova E. P., Zhukova A. A., Shutov A. V., “Geometrizatsiya sistemy schisleniya Fibonachchi i ee prilozheniya k teorii chisel”, Algebra i analiz., 25:6 (2013), 1–23 | MR

[2] Zhukova A. A., Shutov A. V., “Geometrizatsiya sistemy schisleniya”, Chebyshev. sb., 18:4 (2017), 221–244 | DOI | MR

[3] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI., 322 (2005), 83–106 | Zbl

[4] Zhuravlev V. G., “Summy kvadratov nad $\circ$-koltsom Fibonachchi”, Zap. nauch. semin. POMI., 337 (2006), 165–190 | Zbl

[5] Zhuravlev V. G., “Mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI., 445 (2016), 93–174

[6] Kuznetsova D. V., Shutov A. V., “Perekladyvayuschiesya razbieniya tora, podstanovka Rozi i mnozhestva ogranichennogo ostatka”, Mat. zametki., 98:6 (2015), 878–897 | DOI | Zbl

[7] Matiyasevich Yu. V., “Svyaz sistem uravnenii v slovakh i dlinakh s 10-i problemoi Gilberta”, Zap. nauch. semin. LOMI., 8 (1968), 132–144 | Zbl

[8] Shutov A. V., “O skorosti dostizheniya tochnykh granits ostatochnogo chlena v probleme Gekke—Kestena”, Chebyshev. sb., 14:2 (2013), 173–179 | Zbl

[9] Shutov A. V., “Ob odnoi additivnoi zadache s drobnymi dolyami”, Nauch. ved. BelGU. Ser. Mat. Fiz., 5 (148):30 (2013), 111–120

[10] Shutov A. V., “Proizvodnye povorotov okruzhnosti i podobie orbit”, Zap. nauch. semin. POMI., 314 (2004), 272–284 | Zbl

[11] Akiyama S., “Self affine tiling and Pisot numeration system”, Number Theory and Its Applications, eds. Gyory K., Kanemitsu S., Kluwer, Dordrecht, 1999, 7–17 | MR | Zbl

[12] Akiyama S., “On the boundary of self affine tilings generated by Pisot numbers”, J. Math. Soc. Jpn., 54:2 (2002), 83–308 | DOI | MR

[13] Akiyama S., Barat G., Berthe V., Siegel A., “Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions”, Monats. Math., 155 (2008), 377–419 | DOI | MR | Zbl

[14] Arnoux P., Ito S., “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin., 8:2 (2001), 181–207 | MR | Zbl

[15] Berthe V., Siegel A., Thuswaldner J., “Substitutions, Rauzy fractals, and tilings”, Combinatorics, Automata, and Number Theory, Cambridge Univ. Press, 2010, 248–323 | DOI | MR | Zbl

[16] Grabner P. J., Pethõ A., Tichy R. F., Woeginger G. J., “Associativity of recurrence multiplication”, Appl. Math. Lett., 7:4 (1994), 85–90 | DOI | MR | Zbl

[17] Grepstad S., Lev N., “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geom. Funct. Anal., 25:1 (2015), 87–133 | DOI | MR | Zbl

[18] Frougny C., Solomyak B., “Finite beta-expansions”, Ergod. Theory Dynam. Sys., 12 (1992), 713–723 | DOI | MR | Zbl

[19] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod. eins”, Abhand. Math. Sem. Hamburg Univ., 5:1 (1921), 54–76 | MR

[20] Liardet P., “Regularities of distribution”, Compos. Math., 61:3 (1987), 267–293 | MR | Zbl

[21] Knuth D., “Fibonacci multiplication”, Appl. Math. Lett., 1:2 (1988), 3–6 | DOI | MR

[22] Pytheas Fogg N., Substitutions in Dynamics, Arithmetics and Combinatorics, Springer, 2001 | MR

[23] Rauzy G., “Nombres algebriques et substitutions”, Bull. Soc. Math. France., 110 (1982), 147–148 | DOI | MR

[24] Siegel A., Thuswaldner J., Topological properties of Rauzy fractals, Soc. Math. France, 2009 | MR | Zbl