On continuous and discontinuous models of neural fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 10-20
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to research in mathematical neurobiology whose purpose is the establishment of a connection between approaches to the modeling of neural fields based on continuous and discontinuous equations. We review works on this topic and propose a new method for solving such problems based on Volterra's abstract inclusions, which allows one to generalize some previously obtained results.
Keywords:
mathematical model, neural field, integral equation, Hammerstein equation, solvability, continuous dependence on parameters.
@article{INTO_2019_165_a1,
author = {E. O. Burlakov and T. V. Zhukovskaya and E. S. Zhukovskiy and N. P. Puchkov},
title = {On continuous and discontinuous models of neural fields},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {10--20},
publisher = {mathdoc},
volume = {165},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/}
}
TY - JOUR AU - E. O. Burlakov AU - T. V. Zhukovskaya AU - E. S. Zhukovskiy AU - N. P. Puchkov TI - On continuous and discontinuous models of neural fields JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 10 EP - 20 VL - 165 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/ LA - ru ID - INTO_2019_165_a1 ER -
%0 Journal Article %A E. O. Burlakov %A T. V. Zhukovskaya %A E. S. Zhukovskiy %A N. P. Puchkov %T On continuous and discontinuous models of neural fields %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 10-20 %V 165 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/ %G ru %F INTO_2019_165_a1
E. O. Burlakov; T. V. Zhukovskaya; E. S. Zhukovskiy; N. P. Puchkov. On continuous and discontinuous models of neural fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 10-20. http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/