On continuous and discontinuous models of neural fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 10-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to research in mathematical neurobiology whose purpose is the establishment of a connection between approaches to the modeling of neural fields based on continuous and discontinuous equations. We review works on this topic and propose a new method for solving such problems based on Volterra's abstract inclusions, which allows one to generalize some previously obtained results.
Keywords: mathematical model, neural field, integral equation, Hammerstein equation, solvability, continuous dependence on parameters.
@article{INTO_2019_165_a1,
     author = {E. O. Burlakov and T. V. Zhukovskaya and E. S. Zhukovskiy and N. P. Puchkov},
     title = {On continuous and discontinuous models of neural fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--20},
     publisher = {mathdoc},
     volume = {165},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/}
}
TY  - JOUR
AU  - E. O. Burlakov
AU  - T. V. Zhukovskaya
AU  - E. S. Zhukovskiy
AU  - N. P. Puchkov
TI  - On continuous and discontinuous models of neural fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 10
EP  - 20
VL  - 165
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/
LA  - ru
ID  - INTO_2019_165_a1
ER  - 
%0 Journal Article
%A E. O. Burlakov
%A T. V. Zhukovskaya
%A E. S. Zhukovskiy
%A N. P. Puchkov
%T On continuous and discontinuous models of neural fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 10-20
%V 165
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/
%G ru
%F INTO_2019_165_a1
E. O. Burlakov; T. V. Zhukovskaya; E. S. Zhukovskiy; N. P. Puchkov. On continuous and discontinuous models of neural fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part I, Tome 165 (2019), pp. 10-20. http://geodesic.mathdoc.fr/item/INTO_2019_165_a1/

[1] Burlakov E. O., Zhukovskii E. S., “O korrektnosti obobschennykh uravnenii neiropolei s impulsnym upravleniem”, Izv. vuzov. Mat., 2016, no. 5, 75–79

[2] Amari S., “Dynamics of pattern formation in lateral-inhibition type neural fields”, Biol. Cybern., 27 (1977), 77–87 | DOI | MR | Zbl

[3] Burlakov E., Ponosov A., Wyller J., “Stationary solutions of continuous and discontinuous neural field equations”, J. Math. Anal. Appl., 444 (2016), 47–68 | DOI | MR | Zbl

[4] Burlakov E., Wyller J., Ponosov A., “Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions”, Commun. Nonlin. Sci. Numer. Simul., 32 (2016), 81–88 | DOI | MR

[5] Laing C. R., Troy W. C., “PDE methods for nonlocal models”, SIAM J. Appl. Dynam. Syst., 2 (2003), 487–516 | DOI | MR | Zbl

[6] Oleynik A., Ponosov A., Kostrykin V., Sobolev A., “Spatially localized solutions of the Hammerstein equation with sigmoid type of nonlinearity”, J. Differ. Equations., 261:10 (2016), 5844–5874 | DOI | MR | Zbl

[7] Oleynik A., Ponosov A., Wyller J., “Iterative schemes for bump solutions in neural field model”, Differ. Equ. Dynam. Syst., 23:1 (2015), 79–98 | DOI | MR | Zbl

[8] Oleynik A., Ponosov A., Wyller J., “On the properties of nonlinear nonlocal operators arising in neural field models”, J. Math. Anal. Appl., 398 (2013), 335–351 | DOI | MR | Zbl

[9] Pinto D. J., Ermentrout G. B., “Spatially structured activity in synapticaly couple neuronal networks: II. Lateral inhibition and standing pulses”, SIAM J. Appl. Math., 62 (2001), 226–243 | DOI | MR | Zbl

[10] Potthast R., Graben P. B., “Existence and properties of solutions for neural field equations”, Math. Meth. Appl. Sci., 8 (2010), 935–949 | MR | Zbl

[11] Ursino M., La Cara G. E., “Travelling waves and EEG patterns during epileptic seizure: Analysis with an integrate-and-fire neural network”, J. Theor. Biol., 242:1 (2006), 171–187 | DOI | MR