Modules over discrete valuation domains. III
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 164 (2019), pp. 74-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This review paper is a continuation of two previous review papers devoted to properties of modules over discrete valuation domains. The first and second parts of this work (containing respectively of Chaps. 1–4, Secs. 1–22 and Chaps. 5–8, Secs. 23–39) were published in Journal of Mathematical Sciences (New York), 145, No. 4, 4997–5117 (2007), and 151, No. 5, 3225-3371 (2008). In this review paper, we continue the numeration of chapters and sections of parts I and II. The present third part consists of Chap. 9 “Appendix,” Secs. 40–42. In Sec. 40, we consider $p$-adic torsion-free modules with isomorphic automorphism groups. Section 41 is devoted to torsion-free modules over a complete discrete valuation domain with isomorphic radicals of their endomorphism rings. The volume of the paper does not allow us to provide proofs of all results that appeared after publication of the previous parts and directly related to the issues under consideration in it. In the final Section 42, we describe some of these new results.
Mots-clés : discrete valuation domain, $p$-adic module
Keywords: endomorphism ring.
@article{INTO_2019_164_a1,
     author = {P. A. Krylov and A. A. Tuganbaev},
     title = {Modules over discrete valuation domains. {III}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--95},
     publisher = {mathdoc},
     volume = {164},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - A. A. Tuganbaev
TI  - Modules over discrete valuation domains. III
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 74
EP  - 95
VL  - 164
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/
LA  - ru
ID  - INTO_2019_164_a1
ER  - 
%0 Journal Article
%A P. A. Krylov
%A A. A. Tuganbaev
%T Modules over discrete valuation domains. III
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 74-95
%V 164
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/
%G ru
%F INTO_2019_164_a1
P. A. Krylov; A. A. Tuganbaev. Modules over discrete valuation domains. III. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 164 (2019), pp. 74-95. http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/

[1] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy separabelnykh abelevykh grupp”, Fundam. prikl. mat., 4:4 (1998), 1281–1307 | MR

[2] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp bez krucheniya i ikh reshetki”, Fundam. prikl. mat., 6:3 (2000), 747–759 | MR

[3] Grinshpon S. Ya., Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost, diss. na soisk. uch. step. dokt. fiz.-mat. nauk., Tomsk, 2000 | Zbl

[4] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost”, Fundam. prikl. mat., 8:2 (2002), 407–473 | MR | Zbl

[5] Grinshpon S. Ya., Misyakov V. M., “O vpolne tranzitivnykh abelevykh gruppakh”, Abelevy gruppy i moduli, v. 6, Tomsk, 1986, 12–27

[6] Davydova O. I., “Faktorno delimye gruppy ranga 1”, Fundam. prikl. mat., 13:3 (2007), 25–33

[7] Dobrusin Yu. B., Abelevy gruppy, blizkie k algebraicheski kompaktnym, diss. na soisk. uch. step. kand. fiz.-mat. nauk., Tomsk, 1981

[8] Eraskina A. P., “O $\lambda$-chistote modulei nad koltsami diskretnogo normirovaniya”, Sib. mat. zh., 14 (1973), 208–212 | MR | Zbl

[9] Ivanov A. V., “Ob odnoi probleme abelevykh grupp”, Mat. sb., 105 (147):4 (1978), 525–542 | MR | Zbl

[10] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. mat. zh., 24:2 (1983), 77–84 | MR | Zbl

[11] Krylov P. A., “Vpolne tranzitivnye abelevy gruppy bez krucheniya”, Algebra i logika., 29:5 (1990), 549–560 | MR | Zbl

[12] Krylov P. A., Koltsa endomorfizmov i strukturnaya teoriya abelevykh grupp, diss. na soisk. uch. step. dokt. fiz.mat nauk., Tomsk, 1991

[13] Krylov P. A., “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fundam. prikl. mat., 6:3 (2000), 793–812 | MR | Zbl

[14] Krylov P. A., “Affinnye gruppy modulei i ikh avtomorfizmy”, Algebra i logika., 40:1 (2001), 60–82 | MR | Zbl

[15] Krylov P. A., “Nasledstvennye koltsa endomorfizmov smeshannykh abelevykh grupp”, Sib. mat. zh., 43:1 (2002), 108–119 | MR | Zbl

[16] Krylov P. A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy”, Algebra i logika., 43:1 (2004), 60–76 | MR | Zbl

[17] Krylov P. A., Klassen E. D., “Tsentr koltsa endomorfizmov rasscheplyayuscheisya smeshannoi abelevoi gruppy”, Sib. mat. zh., 40:5 (1999), 1074–1085 | MR | Zbl

[18] Krylov P. A., Pakhomova E. G., “Abelevy gruppy i regulyarnye moduli”, Mat. zametki., 69:3 (2001), 402–411 | DOI | MR | Zbl

[19] Krylov P. A., Tuganbaev A. A., “Idempotentnye funktory i lokalizatsii v kategoriyakh modulei i abelevykh grupp”, Fundam. prikl. mat., 16:7 (2010), 75–159

[20] Krylov P. A., Tuganbaev A. A., Tsarev A. V., “Vokrug Teoremy Bera—Kaplanskogo”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 159 (2019), 46–67

[21] Krylov P. A., Chekhlov A. R., “Abelevy gruppy bez krucheniya s bolshim chislom endomorfizmov”, Tr. Mat. in-ta im. V. A. Steklova., 2001, no. 2, 156–168 | MR

[22] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Mat. sb., 9 (51):1 (1941), 165–181

[23] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Mat. sb., 16 (58):2 (1945), 129–162 | Zbl

[24] Kulikov L. Ya., “Obobschennye primarnye gruppy, I”, Tr. Mosk. mat. o-va., 1 (1952), 247–326 | MR | Zbl

[25] Kulikov L. Ya., “Obobschennye primarnye gruppy, II”, Tr. Mosk. mat. o-va., 2 (1953), 85–167 | MR

[26] Markov V. T., Mikhalev A. V., Skornyakov L. A., Tuganbaev A. A., “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhn. Ser. Algebra. Topologiya. Geometriya., 21 (1983), 183–254 | MR | Zbl

[27] Misyakov V. M., Polnaya trnazitivnost abelevykh grupp, diss. na soisk. uch. step. kand. fiz.-mat nauk., Tomsk, 1992

[28] Prikhodovskii M. A., Izomorfizmy tenzornykh proizvedenii modulei i $T$-modulei, diss. na soisk. uch. step. kand. fiz.-mat nauk., Tomsk, 2002

[29] Puninskii G. E., Tuganbaev A. A., Koltsa i moduli, Soyuz, M., 1998 | MR

[30] Timoshenko E. A., “$T$-radikaly i $E$-radikaly v kategorii modulei”, Sib. mat. zh., 45:1 (2004), 201–210 | MR | Zbl

[31] Timoshenko E. A., Tsarev A. V., “Posledovatelnosti grupp endomorfizmov abelevykh grupp”, Mat. zametki., 104:2 (2018), 309–317 | DOI | Zbl

[32] Tuganbaev A. A., “Maloproektivnye moduli”, Sib. mat. zh., 21:5 (1980), 109–113 | MR | Zbl

[33] Tuganbaev A. A., “Polutsepnye koltsa i moduli”, Mat. zametki., 48:2 (1990), 99–106 | Zbl

[34] Fomin A. A., “Abelevy gruppy so svobodnymi podgruppami beskonechnogo indeksa i ikh koltsa endomorfizmov”, Mat. zametki., 36:2 (1984), 179–187 | MR | Zbl

[35] Fomin A. A., “Dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Sib mat. zh., 27:4 (1986), 117–127 | MR | Zbl

[36] Fomin A. A., “Chistye svobodnye gruppy”, Abelevy gruppy i moduli, v. 6, Tomsk, 1986, 145–164

[37] Fomin A. A., “Invarianty i dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Algebra i logika., 26:1 (1987), 63–83 | MR

[38] Friger M. D., “O zhestkikh koltsakh bez krucheniya”, Sib. mat. zh., 27:3 (1986), 217–219 | MR | Zbl

[39] Tsarev A. V., “$T$-koltsa i faktorno delimye gruppy ranga $1$”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 4 (24) (2013), 50–53

[40] Chekhlov A. R., “O razlozhimykh vpolne tranzitivnykh gruppakh bez krucheniya”, Sib. mat. zh., 42:3 (2001), 714–719 | MR | Zbl

[41] Chekhlov A. R., “Ob odnom klasse endotranzitivnykh grupp”, Mat. zametki., 69:6 (2001), 944–949 | DOI | Zbl

[42] Chekhlov A. R., “Vpolne tranzitivnye gruppy bez krucheniya konechnogo $p$-ranga”, Algebra i logika., 40:6 (2001), 698–715 | MR | Zbl

[43] Chekhlov A. R., Abelevy gruppy s bolshim chislom endomorfizmov, diss. na soisk. uch. step. dokt. fiz.-mat. nauk., Tomsk, 2003

[44] Yakovlev A. V., “O pryamykh razlozheniyakh $p$-adicheskikh grupp”, Algebra i analiz., 12:6 (2000), 217–223

[45] Yakovlev A. V., “O pryamykh razlozheniyakh $S$-lokalnykh grupp”, Algebra i analiz., 13:4 (2001), 229–253

[46] Ali M. M., “Invertibility of multiplication modules”, New Zealand J. Math., 35 (2006), 17–29 | MR | Zbl

[47] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer-Verlag, New York, 1974 | MR | Zbl

[48] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the Theory of Topological Rings and Modules, Marcel Dekker, New York, 1995 | MR

[49] Arnold D., “A duality for torsion-free modules of finite rank over a discrete valuation ring”, Proc. London Math. Soc., 24 (1972), 204–216 | DOI | MR | Zbl

[50] Arnold D., “A duality for quotient divisible Abelian groups of finite rank”, Pac. J. Math., 42 (1972), 11–15 | DOI | MR | Zbl

[51] Arnold D., “Exterior powers and torsion free modules over discrete valuation rings”, Trans. Am. Math. Soc., 170 (1972), 471–481 | DOI | MR | Zbl

[52] Arnold D., “Finite rank torsion-free Abelian groups and rings”, Lect. Notes Math., 931 (1982), 1–191 | DOI | MR

[53] Arnold D., “A finite global Azumaya theorem in additive categories”, Proc. Am. Math. Soc., 91:1 (1984), 25–30 | DOI | MR | Zbl

[54] Arnold D., Abelian Groups and Representations of Finite Partially Ordered Sets, Springer-Verlag, New York, 2000 | MR | Zbl

[55] Arnold D., “Direct sums of local torsion-free Abelian groups”, Proc. Am. Math. Soc., 130:6 (2001), 1611–1617 | DOI | MR

[56] Arnold D., Dugas M., “Indecomposable modules over Nagata valuation domains”, Proc. Am. Math. Soc., 122 (1994), 689–696 | DOI | MR | Zbl

[57] Arnold D., Dugas M., “Representation type of posets and finite rank Butler groups”, Colloq. Math., 74 (1997), 299–320 | DOI | MR | Zbl

[58] Arnold D., Dugas M., “Co-purely indecomposable modules over discrete valuation rings”, J. Pure Appl. Algebra., 161 (2001), 1–12 | DOI | MR | Zbl

[59] Arnold D., Dugas M., Rangaswamy K. M., “Finite rank Butler groups and torsion-free modules over a discrete valuation ring”, Proc. Am. Math. Soc., 129 (2001), 325–335 | DOI | MR | Zbl

[60] Arnold D., Dugas M., Rangaswamy K. M., “Torsion-free modules of finite rank over a discrete valuation ring”, J. Algebra., 272:2 (2004), 456–469 | DOI | MR | Zbl

[61] Arnold D., Hunter R., Richman F., “Global Azumaya theorems in additive categories”, J. Pure Appl. Algebra., 16 (1980), 223–242 | DOI | MR | Zbl

[62] Arnold D., Rangaswamy K. M., “Mixed modules of finite torsion-free rank over a discrete valuation domain”, Forum Math., 18:1 (2006), 85–98 | DOI | MR | Zbl

[63] Arnold D., Rangaswamy K. M., Richman F., “Pi-balanced torsion-free modules over a discrete valuation domain”, J. Algebra., 295:1 (2006), 269–288 | DOI | MR | Zbl

[64] Arnold D., Richman F., “Subgroups of finite direct sums of valuated cyclic groups”, J. Algebra., 114:1 (1988), 1–15 | DOI | MR | Zbl

[65] Arnold J., “Power series rings over discrete valuation rings”, Pac. J. Math., 93:1 (1981), 31–33 | DOI | MR | Zbl

[66] Artin E., Geometric Algebra, Interscience Publ., New York, 1957 | MR | Zbl

[67] Astuti P., Wimmer H. K., “Stacked submodules of torsion modules over discrete valuation domains”, Bull. Austr. Math. Soc., 68:3 (2003), 439–447 | DOI | MR | Zbl

[68] Astuti P., Wimmer H. K., “Regular submodules of torsion modules over discrete valuation domains”, arXiv: 1601. 06356v1 [math. AC]

[69] Atiyah M., “On the Krull–Schmidt theorem with applications to sheaves”, Bull. Soc. Math. Fr., 84 (1956), 307–317 | DOI | MR | Zbl

[70] Auslander M., Reiten I., Smalø S. O., Representation Theory of Artin Algebras, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[71] Azumaya G., “Corrections and supplementaries to my paper concerning Krull–Remak–Schmidt's theorem”, Nagoya Math. J., 1 (1950), 117–124 | DOI | MR | Zbl

[72] Baer R., “Abelian groups that are direct summands of every containing Abelian group”, Bull. Am. Math. Soc., 46 (1940), 800–806 | DOI | MR

[73] Baer R., “A unified theory of projective spaces and finite Abelian groups”, Trans. Am. Math. Soc., 52 (1942), 283–343 | DOI | MR | Zbl

[74] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl

[75] Baer R., Linear Algebra and Projective Geometry, Academic Press, New York, 1952 | MR | Zbl

[76] Bass H., Algebraic $K$-Theory, Benjamin, New York, 1968 | MR | Zbl

[77] Beaumont R. A., Pierce R. S., “Torsion-free rings”, Ill. J. Math., 5 (1961), 61–98 | DOI | MR | Zbl

[78] Beaumont R. A., Pierce R. S., “Subrings of algebraic number fields”, Acta Sci. Math. Szeged., 22 (1961), 202–216 | MR | Zbl

[79] Beaumont R. A., Pierce R. S., “Some invariant of $p$-groups”, Michigan Math. J., 11 (1964), 138–149 | MR

[80] Beaumont R. A., Pierce R. S., “Isomorphic direct summands of abelian groups”, Math. Ann., 153:1 (1964), 21–37 | DOI | MR

[81] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273 (2001), 85–93 | DOI | MR | Zbl

[82] Bourbaki N., Algébre Commutative, Hermann, Paris, 1961, 1964, 1965 | MR

[83] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl

[84] Breaz S., “On a class of mixed groups with semi-local Walk-endomorphism ring”, Commun. Algebra., 30:9 (2002), 4473–4485 | DOI | MR | Zbl

[85] Carroll D., Goldsmith B., “On transitive and fully transitive Abelian $p$-groups”, Proc. Roy. Irish Acad., 96A:1 (1996), 33–41 | MR | Zbl

[86] Cartan H., Eilenberg S., Homological Algebra, Princeton Univ. Press, Princeton, 1956 | MR | Zbl

[87] Chekhlov A. R., Krylov P. A., “On L. Fuchs' problems 17 and 43”, J. Math. Sci., 143:5 (2007), 3517–3602 | DOI | MR | Zbl

[88] Corner A. L. S., “Every countable reduced torsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 13:3 (1963), 687–710 | DOI | MR | Zbl

[89] Corner A. L. S., “Endomorphism rings of torsion-free Abelian groups”, Proc. Int. Conf. Theory of Groups, Canberra, 1965, 59–60 | MR

[90] Corner A. L. S., “On endomorphism rings of primary Abelian groups”, Quart. J. Math. Oxford., 20:79 (1969), 277–296 | DOI | MR | Zbl

[91] Corner A. L. S., “The independence of Kaplansky's notions of transitivity and full transitivity”, Quart. J. Math. Oxford., 27 (1976), 15–20 | DOI | MR | Zbl

[92] Corner A. L. S., “Fully rigid systems of modules”, Rend. Sem. Mat. Univ. Padova., 82 (1989), 55–66 | MR | Zbl

[93] Corner A. L. S., Göbel R., “Prescribing endomorphism algebras, a unified treatment”, Proc. London Math. Soc., 50:3 (1985), 447–479 | DOI | MR | Zbl

[94] Corner A. L. S., Goldsmith B., “Isomorphic automorphism groups of torsion-free $p$-adic modules”, Abelian Groups, Theory of Modules, and Topology, Marcel Dekker, New York, 1998, 125–130 | MR | Zbl

[95] Crawley P., Hales A. W. paper The structure of torsion Abelian groups given by presentations, Bull. Am. Math. Soc., 74 (1968), 954–956 | DOI | MR | Zbl

[96] Crawley P., Hales A. W., “The structure of Abelian $p$-groups given by certain presentations”, J. Algebra., 12 (1969), 10–23 | DOI | MR | Zbl

[97] Crawley P., Jónsson B., “Refinements for infinite direct decompositions of algebraic systems”, Pac. J. Math., 14 (1964), 797–855 | DOI | MR | Zbl

[98] Dugas M., “On the existence of large mixed modules”, Lect. Notes Math., 1006 (1983), 412–424 | DOI | MR | Zbl

[99] Dugas M., “On the Jacobson radical of some endomorphism rings”, Proc. Am. Math. Soc., 102:4 (1988), 823–826 | DOI | MR | Zbl

[100] Dugas M., “$AA$-rings”, Commun. Algebra., 32:10 (2004), 3853–3860 | DOI | MR | Zbl

[101] Dugas M., Feigelstock S., “$A$-rings”, Colloq. Math., 96:2 (2003), 277–292 | DOI | MR | Zbl

[102] Dugas M., Göbel R., “Every cotorsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 45 (1982), 319–336 | DOI | MR | Zbl

[103] Dugas M., Göbel R., “Every cotorsion-free algebra is an endomorphism algebra”, Math. Z., 181 (1982), 451–470 | DOI | MR | Zbl

[104] Dugas M., Göbel R., “On endomorphism rings of primary Abelian groups”, Math. Ann., 261 (1982), 359–385 | DOI | MR | Zbl

[105] Dugas M., Göbel R., “Endomorphism algebras of torsion modules, II”, Lect. Notes Math., 1006 (1983), 400–411 | DOI | MR | Zbl

[106] Dugas M., Göbel R., “Torsion-free Abelian groups with prescribed finitely topologized endomorphism rings”, Proc. Am. Math. Soc., 90:4 (1984), 519–527 | DOI | MR | Zbl

[107] Dugas M., Göbel R., Goldsmith B., “Representation of algebras over a complete discrete valuation ring”, Quart. J. Math. $(2)$., 35 (1984), 131–146 | DOI | MR | Zbl

[108] Dugas M., Vinsonhaler C., “Two-side $E$-rings”, J. Pure Appl. Algebra., 185 (2003), 87–102 | DOI | MR | Zbl

[109] Eklof P. C., Set-Theoretic Methods in Homological Algebra and Abelian Groups, Presses Univ. Montréal, Montréal, 1980 | MR | Zbl

[110] Eklof P. C., Goodearl K. R., Trlifaj J., “Dually slender modules and steady rings”, Forum. Math., 9:1 (1997), 61–74 | MR | Zbl

[111] Eklof P. C., Mekler A. H., Almost Free Modules. Set-Theoretic Methods, North-Holland Publ., Amsterdam, 1990 | MR | Zbl

[112] Facchini A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Birkhäuser, Basel–Boston–Berlin, 1998 | MR | Zbl

[113] Facchini A., Zanardo P., “Discrete valuation domains and rank of their maximal extensions”, Rend. Sem. Mat. Univ. Padova., 75 (1986), 143–156 | MR | Zbl

[114] Faith C., Algebra: Rings, Modules, and Categories, Springer-Verlag, Berlin, 1973 | MR | Zbl

[115] Faith C., Algebra, Ring Theory, Springer-Verlag, Berlin, 1976 | MR | Zbl

[116] Faticoni T., “Categories of modules over endomorphism rings”, Mem. Am. Math. Soc., 103:492 (1993), 1–140 | MR

[117] Faticoni Th. G., “Direct sums and refinement”, Commun. Algebra., 27:1 (1999), 451–464 | DOI | MR | Zbl

[118] Feigelstock S., “Full subrings of $E$-rings”, Bull. Austr. Math. Soc., 54 (1996), 275–280 | DOI | MR | Zbl

[119] Feigelstock S., “Additive groups of commutative rings”, Quaest. Math., 23:2 (2000), 241–245 | DOI | MR | Zbl

[120] Feigelstock S., Hausen J., Raphael R., “Groups which map onto their endomorphism rings”, Proceedings Dublin Conference, 1998, Basel, 1999, 231–241 | MR

[121] Files S. T., “Mixed modules over incomplete discrete valuation rings”, Commun. Algebra., 21:11 (1993), 4103–4113 | DOI | MR | Zbl

[122] Files S. T., “Endomorphisms of local Warfield groups”, Contemp. Math., 171 (1994), 99–107 | DOI | MR | Zbl

[123] Files S. T., “Outer automorphisms of endomorphism rings of Warfield groups”, Arch. Math., 65 (1995), 15–22 | DOI | MR | Zbl

[124] Files S. T., “Endomorphism algebras of modules with distinguished torsion-free elements”, J. Algebra., 178 (1995), 264–276 | DOI | MR | Zbl

[125] Files S. T., “On transitive mixed Abelian groups”, Lect. Notes Pure Appl. Math., 132 (1996), 243–251 | MR

[126] Files S. T., “Transitivity and full transitivity for nontorsion modules”, J. Algebra., 197 (1997), 468–478 | DOI | MR | Zbl

[127] Files S. T., “The fully invariant subgroups of local Warfield groups”, Proc. Am. Math. Soc., 125:12 (1997), 3515–3518 | DOI | MR | Zbl

[128] Files S., Goldsmith B., “Transitive and fully transitive groups”, Proc. Am. Math. Soc., 126:6 (1998), 1605–1610 | DOI | MR | Zbl

[129] Flagg M., “A Jacobson radical isomorphism theorem for torsion-free modules”, Models, Modules and Abelian Groups, de Gruyter, Berlin, 2008, 309–314 | MR | Zbl

[130] Flagg M., “Jacobson radical isomorphism theorems for mixed modules part one: determining the torsion”, Commun. Algebra., 37:5 (2009), 1739–1747 | DOI | MR | Zbl

[131] Flagg M., “The role of the Jacobson radical in isomorphism theorems”, Contemp. Math., 576 (2012), 77–88 | DOI | MR | Zbl

[132] Flagg M., “The Jacobson radical's role in isomorphism theorems for $p$-adic modules extends to topogical isomorphism”, Groups, Modules, and Model Theory Surveys and Resent Developments, Springer-Verlag, 2017, 285–300 | DOI | MR

[133] Fomin A. A., “The category of quasi-homomorphisms of torsion-free Abelian groups of finite rank”, Contemp. Math., 131 (1992), 91–111 | DOI | MR | Zbl

[134] Fomin A. A., “Finitely presented modules over the ring of universal numbers”, Contemp. Math., 171 (1994), 109–120 | DOI | MR | Zbl

[135] Fomin A., Wickless W., “Categories of mixed and torsion-free Abelian groups”, Abelian Groups and Modules, Kluwer, Boston, 1995, 185–192 | DOI | MR | Zbl

[136] Fomin A., Wickless W., “Quotient divisible Abelian groups”, Proc. Am. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl

[137] Franzen B., Gobel R., “Prescribing endomorphism algebras, the cotorsion-free case”, Rend. Sem. Mat. Univ. Padova., 80 (1989), 215–241 | MR

[138] Franzen B., Goldsmith B., “On endomorphism algebras of mixed modules”, J. London Math. Soc., 31:3 (1985), 468–472 | DOI | MR | Zbl

[139] Franzsen W. N., Schultz P., “The endomorphism ring of locally free module”, J. Austral. Math. Soc. Ser. A., 35 (1983), 308–326 | DOI | MR | Zbl

[140] Fuchs L., “On the structure of Abelian $p$-groups”, Acta Math. Acad. Sci. Hung., 4 (1953), 267–288 | DOI | MR | Zbl

[141] Fuchs L., “Notes on Abelian groups, I”, Ann. Univ. Sci. Budapest., 2 (1959), 5–23 | MR | Zbl

[142] Fuchs L., “Notes on Abelian groups, II”, Acta Math. Acad. Sci. Hung., 11 (1960), 117–125 | DOI | MR | Zbl

[143] Fuchs L., Infinite Abelian Groups. Vols. I, II, Academic Press, New York–London, 1970, 1973 | MR

[144] Fuchs L., Abelian $p$-Groups and Mixed Groups, Univ. of Montreal Press, Montreal, 1980 | MR | Zbl

[145] Fuchs L., Abelian Groups, Springer-Verlag, 2015 | MR | Zbl

[146] Fuchs L., Salce L., “Modules over valuation domains”, Lect. Notes Pure Appl. Math., v. 97, Marcel Dekker, New York, 1985 | MR | Zbl

[147] Fuchs L., Salce L., “Modules over non-Noetherian domains”, v. 84, Math. Surv. Monogr., Am. Math. Soc., Providence, Rhode Island, 2001 | MR

[148] Gabriel P., “Des catégories abéliennes”, Bull. Soc. Math. Fr., 90 (1962), 323–448 | DOI | MR | Zbl

[149] Goeters H. P., “The structure of Ext for torsion-free modules of finite rank over Dedekind domains”, Commun. Algebra., 31:7 (2003), 3251–3263 | DOI | MR | Zbl

[150] Goldsmith B., “Endomorphism rings of torsion-free modules over a complete discrete valuation ring”, J. London Math. Soc., 2:3 (1978), 464–471 | DOI | MR

[151] Goldsmith B., “Essentially-rigid families of Abelian $p$-groups”, J. London Math. Soc. $(2)$., 18 (1978), 70–74 | DOI | MR | Zbl

[152] Goldsmith B., “Essentially indecomposable modules over a complete discrete valuation ring”, Rend. Sem. Mat. Univ. Padova., 70 (1983), 21–29 | MR

[153] Goldsmith B., “An essentially semi-rigid class of modules”, J. London Math. Soc. $(2)$., 29:3 (1984), 415–417 | DOI | MR | Zbl

[154] Goldsmith B., “On endomorphisms and automorphisms of some torsion-free modules”, Abelian Group Theory, Gordon Breach, New York, 1987, 417–423 | MR

[155] Goldsmith B., “On endomorphism rings of non-separable Abelian $p$-groups”, J. Algebra., 127 (1989), 73–79 | DOI | MR | Zbl

[156] Goldsmith B., May W., “The Krull–Schmidt problem for modules over valuation domains”, J. Pure Appl. Algebra., 140:1 (1999), 57–63 | DOI | MR | Zbl

[157] Goldsmith B., Pabst S., Scott A., “Unit sum numbers of rings and modules”, Quart. J. Math., 49 (1998), 331–344 | DOI | MR | Zbl

[158] Goldsmith B., Zanardo P., “On the analogue of Corner's finite rank theorem for modules over valuation domains”, Arch. Math., 60:1 (1993), 20–24 | DOI | MR | Zbl

[159] Goldsmith B., Zanardo P., “The Walker endomorphism algebra of a mixed module”, Proc. Roy. Irish Acad. Sect. A., 93:1 (1993), 131–136 | MR | Zbl

[160] \label{[104]} Goldsmith B., Zanardo P., “Endomorphism rings and automorphism groups of separable torsion-free modules over valuation domains”, Abelian Groups, Theory of Modules, and Topology, Marcel Dekker, New York, 1998, 249–260 | MR | Zbl

[161] Goodearl K. R., Ring Theory, Marcel Dekker, New York–Basel, 1976 | MR | Zbl

[162] Göbel R., “Endomorphism rings of Abelian groups”, Lect. Notes Math., 1006 (1983), 340–353 | DOI | MR | Zbl

[163] Göbel R., “Modules with distinguished submodules and their endomorphism algebras”, Abelian Groups, Marcel Dekker, New York, 1993, 55–64 | MR | Zbl

[164] Göbel R., Goldsmith B., “Essentially indecomposable modules which are almost free”, Quart. J. Math. Oxford $(2)$., 39 (1988), 213–222 | DOI | MR | Zbl

[165] Göbel R., Goldsmith B., “Mixed modules in $L$”, Rocky Mountain J. Math., 19 (1989), 1043–1058 | DOI | MR | Zbl

[166] Göbel R., Goldsmith B., “On almost-free modules over complete discrete valuation rings”, Rend. Sem. Mat. Univ. Padova., 86 (1991), 75–87 | MR | Zbl

[167] Göbel R., Goldsmith B., “On separable torsion-free modules of countable density character”, J. Algebra., 144 (1991), 79–87 | DOI | MR | Zbl

[168] Göbel R., Goldsmith B., “Cotorsion-free algebras as endomorphism algebras in $L$ — the discrete and topological cases”, Comment. Math. Univ. Carolinae., 34:1 (1993), 1–9 | MR | Zbl

[169] Göbel R., May W., “The construction of mixed modules from torsion modules”, Arch. Math., 48 (1987), 476–490 | DOI | MR | Zbl

[170] Göbel R., May W., “Independence in completions and endomorphism algebras”, Forum Math., 1 (1989), 215–226 | DOI | MR | Zbl

[171] Göbel R., Opdenhövel A., “Every endomorphism of a local Warfield module of finite torsion-free rank is the sum of two automorphisms”, J. Algebra., 233 (2000), 758–771 | DOI | MR | Zbl

[172] Göbel R., Paras A., “Splitting off free summand of torsion-free modules over complete dvrs”, Glasgow Math. J., 44 (2002), 349–351 | DOI | MR | Zbl

[173] Göbel R., Shelah S., Strüngmann L., “Generalized $E$-Rings”, 2003, arXiv: arxiv.org/pdf/math/0404271

[174] Göbel R., Shelah S., Strüngmann L., “$\aleph_n$-Free modules over complete discrete valuation domains with almost trivial duals”, Glasgow Math. J., 55 (2013), 369–380 | DOI | MR | Zbl

[175] Göbel R., Trlifaj J., “Approximations and Endomorphism Algebras of Modules”, Expos. Math., 41, de Gruyter, Berlin, 2006 | MR | Zbl

[176] Göbel R., Wald B., “Separable torsion-free modules of small type”, Houston J. Math., 16 (1990), 271–287 | MR

[177] Grätzer G., General Lattice Theory, Academie-Verlag, Berlin, 1978 | MR | Zbl

[178] Griffith P., “Transitive and fully transitive primary Abelian groups”, Pac. J. Math., 25 (1968), 249–254 | DOI | MR | Zbl

[179] Griffith P. A., Infinite Abelian Group Theory, Univ. of Chicago Press, Chicago–London, 1970 | MR | Zbl

[180] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl

[181] Grishin A. V., “Strongly indecomposable localizations of the ring of algebraic integers”, Commun. Algebra, 43:9 (2015), 3816–3822 | DOI | MR | Zbl

[182] Grishin A. V., Tsarev A. V., “$\mathcal{E}$-closed groups and modules”, J. Math. Sci. (New York), 186:4 (2012), 592–598 | DOI | MR | Zbl

[183] Gubareni N., “Valuation and discrete valuation rings”, Sci. Res. Inst. Math. Comp. Sci., 10:1 (2011), 61–70

[184] Harada M., Factor Categories with Applications to Direct Decomposition of Modules, Marcel Dekker, New York, 1983 | MR | Zbl

[185] Harrison D. K., “Infinite Abelian groups and homological methods”, Ann. Math., 69:2 (1959), 366–391 | DOI | MR | Zbl

[186] Harrison D. K., “On the structure of $\operatorname{Ext}$”, Topics in Abelian Groups, Scott Foresman and Co., Chicago, 1963, 195–209 | MR

[187] Hausen J., “Modules with the summand intersection property”, Commun. Algebra., 17:1 (1989), 135–148 | DOI | MR | Zbl

[188] Hausen J., Johnson J. A., “Determining Abelian $p$-groups by the Jacobson radical of their endomorphism rings”, J. Algebra., 174 (1995), 217–224 | DOI | MR | Zbl

[189] Hausen J., Praeger C. E., Schultz P., “Most Abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216 (1994), 431–436 | DOI | MR | Zbl

[190] Hennecke G., Strüngmann L., “Transitivity and full transitivity for $p$-local modules”, Arch. Math., 74 (2000), 321–329 | DOI | MR | Zbl

[191] Herstein I. N., Noncommutative Rings, Wiley, New York, 1968 | MR | Zbl

[192] Hill P., “Sums of countable primary groups”, Proc. Am. Math. Soc., 17 (1966), 1469–1470 | MR | Zbl

[193] Hill P., “Ulm's theorem for totally projective groups”, Not. Am. Math. Soc., 14 (1967), 940

[194] Hill P., “On transitive and fully transitive primary groups”, Proc. Am. Math. Soc., 22 (1969), 414–417 | DOI | MR | Zbl

[195] Hill P., “Endomorphism rings generated by units”, Trans. Am. Math. Soc., 141 (1969), 99–105 | DOI | MR | Zbl

[196] Hill P., “The classification problem”, Abelian Groups and Modules, Springer-Verlag, Vienna, 1984, 1–16 | MR

[197] Hill P., Lane M., Megibben C., “On the structure of $p$-local groups”, J. Algebra., 143 (1991), 29–45 | DOI | MR | Zbl

[198] Hill P., Megibben C., “On the theory and classification of Abelian $p$-groups”, Math. Z., 190 (1985), 17–38 | DOI | MR | Zbl

[199] Hill P., Megibben C., “Axiom 3 modules”, Trans. Am. Math. Soc., 295:2 (1986), 715–734 | MR | Zbl

[200] Hill P., Megibben C., “Torsion-free groups”, Trans. Am. Math. Soc., 295 (1986), 735–751 | DOI | MR | Zbl

[201] Hill P., Megibben C., “Mixed groups”, Trans. Am. Math. Soc., 334 (1992), 121–142 | DOI | MR | Zbl

[202] Hill P., Ullery W., “The transitivity of local Warfied groups”, J. Algebra., 208 (1998), 643–661 | DOI | MR | Zbl

[203] Hill P., Ullery W., “Isotype subgroups of local Warfield groups”, Commun. Algebra., 29:5 (2001), 1899–1907 | DOI | MR | Zbl

[204] Hill P., West J. K., “Subgroup transitivity in Abelian groups”, Proc. Am. Math. Soc., 126:5 (1998), 1293–1303 | DOI | MR | Zbl

[205] Hunter R., “Balanced subgroups of Abelian groups”, Trans. Am. Math. Soc., 215 (1976), 81–98 | DOI | MR | Zbl

[206] Hunter R., Richman F., “Global Warfield groups”, Trans. Am. Math. Soc., 266:1 (1981), 555–572 | DOI | MR | Zbl

[207] Hunter R., Richman F., Walker E., “Warfield modules”, Lect. Notes Math., 616 (1977), 87–123 | DOI | MR | Zbl

[208] Hunter R., Richman F., Walker E., “Existence theorems for Warfield groups”, Trans. Am. Math. Soc., 235 (1978), 345–362 | DOI | MR | Zbl

[209] Hunter R., Walker E., “$S$-groups revisited”, Proc. Am. Math. Soc., 82 (1981), 13–18 | MR | Zbl

[210] Irwan S. E., Garminia H., Astuti P., “On valuations of vector spaces”, JP J. Alg. Number Theory Appl., 38:6 (2016), 633–646 | Zbl

[211] Jacobson N., Structure of Rings, Am. Math. Soc., Providence, Rhode Island, 1968 | MR

[212] Jarisch R., Mutzbauer O., Toubassi E., “Calculating indicators in a class of mixed modules”, Lect. Notes Pure Appl. Math., 182 (1996), 291–301 | MR | Zbl

[213] Jaballah A., “Integral domains whose overrings are dicrete valuation rings”, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), 62:2 (2016), 361–369 | MR | Zbl

[214] Jarisch R., Mutzbauer O., Toubassi E., “Characterizing a class of simply presented modules by relation arrays”, Arch. Math., 71 (1998), 349–357 | DOI | MR | Zbl

[215] Jarisch R., Mutzbauer O., Toubassi E., “Characterizing a class of Warfield modules by relation arrays”, Rocky Mountain J. Math., 30:4 (2000), 1293–1314 | DOI | MR | Zbl

[216] Jarisch R., Mutzbauer O., Toubassi E., “Characterizing a class of Warfield modules by Ulm submodules and Ulm factors”, Arch. Math., 76 (2001), 326–336 | DOI | MR

[217] Jech T., Set Theory, Academic Press, New York, 1978 | MR | Zbl

[218] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press; Ann Arbor, Michigan, 1954 | MR | Zbl

[219] Kaplansky I., “Projective modules”, Ann. Math., 68 (1958), 372–377 | DOI | MR | Zbl

[220] Kaplansky I., “Modules over Dedekind rings and valuation rings”, Trans. Am. Math. Soc., 72 (1952), 327–340 | DOI | MR | Zbl

[221] Kaplansky I., Mackey G., “A generalization of Ulm's theorem”, Summa Brasil. Math., 2 (1951), 195–202 | MR | Zbl

[222] Kasch F., Modules and Rings, Academic Press, London–New York, 1982 | MR | Zbl

[223] Keef P., “An equivalence for categories of modules over a complete discrete valuation domain”, Rocky Mountain J. Math., 27:3 (1997), 843–860 | DOI | MR | Zbl

[224] Kolettis G., Jr., “Direct sums of countable groups”, Duke Math. J., 27 (1960), 111–125 | DOI | MR | Zbl

[225] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Endomorphism rings of Abelian groups”, J. Math. Sci., 110:3 (2002), 2683–2745 | DOI | MR | Zbl

[226] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003 | MR | Zbl

[227] Krylov P. A., Tuganbaev A. A., “Modules over discrete valuation domains, I”, J. Math. Sci., 145:4 (2007), 4997–5117 | DOI | MR | Zbl

[228] Krylov P. A., Tuganbaev A. A., “Modules over discrete valuation domains, II”, J. Math. Sci., 151:5 (2008), 3255–3371 | DOI | MR | Zbl

[229] Krylov P. A., Tuganbaev A. A., Formal Matrices, Springer-Verlag, 2017 | MR | Zbl

[230] Kurosh A. G., “Primitive torsionsfreie abelsche gruppen vom endlichen range”, Ann. Math., 38 (1937), 175–203 | DOI | MR | Zbl

[231] Kurosh A. G., The Theory of Groups, Chelsea Publ., New York, 1960 | MR

[232] Lady E. L., “On classifying torsion free modules over discrete valuation rings”, Lect. Notes Math., 616 (1977), 168–172 | DOI | MR | Zbl

[233] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, I”, J. Algebra., 49 (1977), 261–275 | DOI | MR | Zbl

[234] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, II”, J. Algebra., 66 (1980), 281–306 | DOI | MR | Zbl

[235] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, III”, J. Algebra., 66 (1980), 307–320 | DOI | MR | Zbl

[236] Lam T. Y., A First Cource in Noncommutative Rings, Springer-Verlag, New York, 1991 | MR

[237] Lambek J., Lecture on Rings and Modules, Blaisdell Publ., Waltham, 1968 | MR

[238] Lane M., “A new charterization for $p$-local balanced projective groups”, Proc. Am. Math. Soc., 96 (1986), 379–386 | MR | Zbl

[239] Lane M., “Isotype submodules of $p$-local balanced projective groups”, Trans. Am. Math. Soc., 301:1 (1987), 313–325 | MR | Zbl

[240] Lane M., “Fully invariant submodules of $p$-local balanced projective groups”, Rocky Mountain J. Math., 18:4 (1988), 833–841 | DOI | MR | Zbl

[241] Lane M., Megibben C., “Balance projectives and Axiom 3”, J. Algebra., 111 (1987), 457–474 | DOI | MR | Zbl

[242] Leptin H., “Abelsche $p$-gruppen und ihre Automorphismengruppen”, Math. Z., 73 (1960), 235–253 | DOI | MR | Zbl

[243] Levy L., “Torsion-free and divisible modules over non-integral domains”, Can. J. Math., 15:1 (1963), 132–151 | DOI | MR | Zbl

[244] Liebert W., “Endomorphism rings of Abelian $p$-groups”, Études sur les Groupes Abéliens, Springer-Verlag, Berlin, 1968, 239–258 | DOI | MR

[245] Liebert W., “Characterization of the endomorphism rings of divisible torsion modules and reduced complete torsion-free modules over complete discrete valuation rings”, Pac. J. Math., 37:1 (1971), 141–170 | DOI | MR

[246] Liebert W., “Endomorphism rings of reduced torsion-free modules over complete discrete valuation rings”, Trans. Am. Math. Soc., 169 (1972), 347–363 | DOI | MR | Zbl

[247] Liebert W., “Endomorphism rings of reduced complete torsion-free module over complete discrete valuation rings”, Proc. Am. Math. Soc., 36:1 (1972), 375–378 | DOI | MR

[248] Liebert W., “The Jacobson radical of some endomorphism rings”, J. Reine Angew. Math., 262/263 (1973), 166–170 | MR | Zbl

[249] Liebert W., “On-sided ideals in the endomorphism rings of reduced complete torsion-free modules and divisible torsion modules over complete discrete valuation rings”, Symp. Math., 13 (1974), 273–298 | MR | Zbl

[250] Liebert W., “Endomorphism rings of free modules over principal ideal domains”, Duke Math. J., 41 (1974), 323–328 | DOI | MR | Zbl

[251] Liebert W., “Endomorphism rings of Abelian $p$-groups”, Lect. Notes Math., 1006 (1983), 384–399 | DOI | MR | Zbl

[252] Liebert W., “Isomorphic automorphism groups of primary Abelian groups”, Abelian Group Theory, Gordon Breach, New York, 1987, 9–31 | MR

[253] Loth P., Classification of Abelian Groups and Pontryagin Duality, Gordon Breach, Amsterdam, 1998 | MR

[254] Loth P., “Characterizations of Warfield groups”, J. Algebra., 204 (1998), 32–41 | DOI | MR | Zbl

[255] MacLane S., Homology, Academic Press, New York, 1963 | MR

[256] MacLane S., Categories for the Working Mathematician, Springer-Verlag, Berlin, 1971 | MR

[257] Mader A., Almost Completely Decomposable Groups, Gordon Breach, Amsterdam, 1998 | MR

[258] Mader A., Vinsonhaler C., “Torsion-free $E$-modules”, J. Algebra., 115:2 (1988), 401–411 | DOI | MR | Zbl

[259] Matlis E., “Cotorsion modules”, Mem. Am. Math. Soc., 49 (1964) | MR | Zbl

[260] Matlis E., “The decomposability of torsion-free modules of finite rank”, Trans. Am. Math. Soc., 134:2 (1968), 315–324 | DOI | MR | Zbl

[261] May W., “Endomorphism rings of mixed Abelian groups”, Contemp. Math., 87 (1989), 61–74 | DOI | MR | Zbl

[262] May W., “Isomorphism of endomorphism algebras over complete discrete valuation rings”, Math. Z., 204 (1990), 485–499 | DOI | MR | Zbl

[263] May W., “Endomorphism algebras of not necessarily cotorsion-free modules”, Abelian Groups and Noncommutative Rings, Am. Math. Soc., Providence, Rhode Island, 1992, 257–264 | MR

[264] May W., “Endomorphisms over incomplete discrete valuation domains”, Contemp. Math., 171 (1994), 277–285 | DOI | MR | Zbl

[265] May W., “The theorem of Baer and Kaplansky for mixed modules”, J. Algebra., 177 (1995), 255–263 | DOI | MR | Zbl

[266] May W., “The use of the finite topology on endomorphism rings”, J. Pure Appl. Algebra., 163 (2001), 107–117 | DOI | MR | Zbl

[267] May W., “Torsion-free modules with nearly unique endomorphism algebras”, Commun. Algebra., 31:3 (2003), 1271–1278 | DOI | MR | Zbl

[268] May W., Toubassi E., “Endomorphisms of rank one mixed modules over discrete valuation rings”, Pac. J. Math., 108:1 (1983), 155–163 | DOI | MR | Zbl

[269] May W., Zanardo P., “Modules over domains large in a complete discrete valuation ring”, Rocky Mountain J. Math., 30:4 (2000), 1421–1436 | DOI | MR | Zbl

[270] Megibben C., “Large subgroups and small homomorphisms”, Michigan Math. J., 13 (1966), 153–160 | DOI | MR | Zbl

[271] Megibben C., “Modules over an incomplete discrete valuation ring”, Proc. Am. Math. Soc., 19 (1968), 450–452 | DOI | MR | Zbl

[272] Megibben C., “A nontransitive, fully transitive primary group”, J. Algebra., 13 (1969), 571–574 | DOI | MR | Zbl

[273] van der Merwe B., “Unique addition modules”, Commun. Algebra., 27:9 (1999), 4103–4115 | DOI | MR | Zbl

[274] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, First Int. Tainan–Moscow Algebra Workshop, Tainan, 1994, de Gruyter, Berlin, 1996, 69–122 | MR | Zbl

[275] Mishina A. P., Skornyakov L. A., Abelian Groups and Modules, Am. Math. Soc., Providence, Rhode Island, 1976 | MR | Zbl

[276] Mo Bang C., “A classification of modules over complete discrete valuation rings”, Bull. Am. Math. Soc., 76 (1970), 381–383 | DOI | MR

[277] Mo Bang C., “Countable generated modules over complete discrete valuation rings”, J. Algebra., 14 (1970), 552–560 | DOI | MR | Zbl

[278] Mo Bang C., “Direct sums of countable generated modules over complete discrete valuation rings”, Proc. Am. Math. Soc., 28:2 (1971), 381–388 | DOI | MR | Zbl

[279] Moghaderi J., Nekooei R., “Valuation, discrete valuation and Dedekind modules”, Int. Electron. J. Algebra., 8 (2010), 18–29 | MR | Zbl

[280] Mohamed S. H., Muller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[281] Monk G., “One sided ideals in the endomorphism ring of an Abelian $p$-group”, Acta Math. Acad. Sci., 19 (1968), 171–185 | DOI | MR | Zbl

[282] Moore J. H., “A characterization of Warfield groups”, Proc. Am. Math. Soc., 87 (1983), 617–620 | DOI | MR | Zbl

[283] Mutzbauer O., Toubassi E., “A splitting criterion for a class of mixed modules”, Rocky Mountain J. Math., 24 (1994), 1533–1543 | DOI | MR | Zbl

[284] Mutzbauer O., Toubassi E., “Extending a splitting criterion on mixed modules”, Contemp. Math., 171 (1994), 305–312 | DOI | MR | Zbl

[285] Mutzbauer O., Toubassi E., “Classification of mixed modules”, Acta Math. Hung., 72:1–2 (1996), 153–166 | DOI | MR | Zbl

[286] Nagata M., Local Rings, Wiley, New York, 1962 | MR | Zbl

[287] Nunke R. J., “Modules of extensions over Dedekind rings”, Ill. J. Math., 3 (1959), 222–241 | DOI | MR | Zbl

[288] Nunke R. J., “Purity and subfunctors of the identity”, Topics in Abelian Groups, Chicago–Illinois, 1963, 121–171 | MR

[289] Nunke R. J., “Homology and direct sums of countable Abelian groups”, Math. Z., 101 (1967), 182–212 | DOI | MR | Zbl

[290] Pierce R. S., “Homomorphisms of primary Abelian groups”, Topics in Abelian Groups, Chicago, Illinois, 1963, 215–310 | MR

[291] Pierce R. S., “Endomorphism rings of primary Abelian groups”, Proc. Colloq. Abelian Groups, Académiai Kiadó, Budapest, 1964, 125–137 | MR

[292] Pierce R. S., “$E$-modules”, Abelian group theory, Perth, 1987, 221–240 | MR

[293] Plotkin B. I., Groups of Automorphisms of Algebraic Systems, Wolters-Noordhoff Publ., Groningen, 1972 | MR | Zbl

[294] Procházka L., “A generalization of a Prüfer–Kaplansky theorem”, Lect. Notes Math., 1006 (1983), 617–629 | DOI | MR | Zbl

[295] Prüfer H., “Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen”, Math. Z., 17 (1923), 35–61 | DOI | MR | Zbl

[296] Ribenboim P., “On the completion of a valuation ring”, Math. Ann., 155 (1964), 392–396 | DOI | MR | Zbl

[297] Richman F., “The constructive theory of $KT$-modules”, Pac. J. Math., 61 (1975), 621–637 | DOI | MR

[298] Richman F., “Mixed local groups”, Lect. Notes Math., 874 (1981), 374–404 | DOI | MR | Zbl

[299] Richman F., “Mixed groups”, Lect. Notes Math., 1006 (1983), 445–470 | DOI | MR | Zbl

[300] Richman F., “Nice subgroups of mixed local groups”, Commun. Algebra., 11:1 (1983), 1629–1642 | DOI | MR | Zbl

[301] Richman F., Walker E. A., “Extending Ulm's theorem without group theory”, Proc. Am. Math. Soc., 21 (1969), 194–196 | MR | Zbl

[302] Richman F., Walker E. A., “Filtered modules over discrete valuation domains”, J. Algebra., 199:2 (1998), 618–645 | DOI | MR | Zbl

[303] Rickart C. E., “Isomorphic groups of linear transformations”, Am. J. Math., 72 (1950), 451–464 | DOI | MR | Zbl

[304] Rotman J., “A note on completions of modules”, Proc. Am. Math. Soc., 11 (1960), 356–360 | DOI | MR | Zbl

[305] Rotman J., “Mixed modules over valuation rings”, Pac. J. Math., 10 (1960), 607–623 | DOI | MR | Zbl

[306] Rotman J., “A completion functor on modules and algebras”, J. Algebra., 9 (1968), 369–387 | DOI | MR | Zbl

[307] Rotman J., Yen T., “Modules over a complete discrete valuation ring”, Trans. Am. Math. Soc., 98 (1961), 242–254 | DOI | MR | Zbl

[308] Roux B., “Anneaux non commutatifs de valuation discrète ou finie, scindés, I”, C. R. Acad. Sci. Paris. Sér. I. Math., 302:7 (1986), 259–262 | MR | Zbl

[309] Roux B., “Anneaux non commutatifs de valuation discrète ou finie, scindés, II”, C. R. Acad. Sci. Paris. Sér. I. Math., 302:8 (1986), 291–293 | MR | Zbl

[310] Roux B., “Anneaux non commutatifs de valuation discrète, scindés, en caractéristique zéro”, C. R. Acad. Sci. Paris. Sér. I. Math., 303:14 (1986), 663–666 | MR | Zbl

[311] Roux B., “Hautes $\sigma$-dérivations et anneaux de valuation discrète non commutatifs, en caractéristique zéro”, C. R. Acad. Sci. Paris, Sér. I. Math., 303:19 (1986), 943–946 | MR | Zbl

[312] Roux B., “Anneaux de valuation discrète complets, scindés, non commutatifs, en caractéristique zéro”, Lect. Notes Math., 1296 (1987), 276–311 | DOI | MR | Zbl

[313] Rowen L. H., Ring Theory, Academic Press, New York, 1988 | MR

[314] Salce L., Zanardo P., “Rank-two torsion-free modules over valuation domains”, Rend. Sem. Mat. Univ. Padova., 80 (1988), 175–201 | MR | Zbl

[315] Sands A. D., “On the radical of the endomorphism ring of a primary Abelian group”, Abelian Groups and Modules, Springer-Verlag, Vienna, 1984, 305–314 | MR

[316] Schultz P., “Periodic homomorphism sequences of Abelian groups”, Arch. Math., 21 (1970), 132–135 | DOI | MR | Zbl

[317] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Austr. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl

[318] Schultz P., “Notes on mixed groups, I”, Abelian Groups and Modules, Springer-Verlag, Vienna, 1984, 265–278 | MR

[319] Schultz P., “Notes on mixed groups, II”, Rend. Sem. Mat. Univ. Padova., 75 (1986), 67–76 | MR | Zbl

[320] Schultz P., “When is an Abelian $p$-group determined by the Jacobson radical of its endomorphism ring?”, Contemp. Math., 171 (1994), 385–396 | DOI | MR | Zbl

[321] Schultz P., “Automorphisms which determine an Abelian $p$-group”, Abelian Groups, Theory of Modules, and Topology, Marcel Dekker, New York, 1998, 373–379 | MR | Zbl

[322] Stefanescu D., “On the factorization of polynomials over discrete valuation domains”, An. St. Univ. Ovidius Constanta., 22:1 (2014), 273–280 | MR | Zbl

[323] Stanton R. O., “An invariant for modules over a discrete valuation ring”, Proc. Am. Math. Soc., 49:1 (1975), 51–54 | DOI | MR | Zbl

[324] Stanton R. O., “Decomposition bases and Ulm's theorem”, Lect. Notes Math., 616 (1977), 39–56 | DOI | MR | Zbl

[325] Stanton R. O., “Relative $S$-invariants”, Proc. Am. Math. Soc., 65 (1977), 221–224 | MR | Zbl

[326] Stanton R. O., “Decomposition of modules over a discrete valuation ring”, J. Austr. Math. Soc., 27 (1979), 284–288 | DOI | MR

[327] Stanton R. O., “Almost affable Abelian groups”, J. Pure Appl. Alg., 15 (1979), 41–52 | DOI | MR | Zbl

[328] Stratton A. E., “Mixed modules over an incomplete discrete valuation ring”, Proc. London Math. Soc., 21 (1970), 201–218 | DOI | MR | Zbl

[329] Stratton A. E., “A note on the splitting problem for modules over an incomplete discrete valuation ring”, Proc. London Math. Soc. (3)., 23 (1971), 237–250 | DOI | MR | Zbl

[330] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998 | MR | Zbl

[331] Tuganbaev A. A., Distributive Modules and Related Topics, Gordon Breach, Amsterdam, 1999 | MR | Zbl

[332] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002 | MR | Zbl

[333] Ulm H., “Zur Theorie der abzählbar-unendlichen abelschen Gruppen”, Math. Ann., 107 (1933), 774–803 | DOI | MR

[334] Underwood R. G., “Galois theory of modules over a discrete valuation ring”, Recent Research on Pure and Applied Algebra, Nova Sci. Publ., Hauppauge, 2003, 23–45 | MR | Zbl

[335] Vámos P., “Decomposition problems for modules over valuation domains”, J. London Math. Soc., 41 (1990), 10–26 | DOI | MR | Zbl

[336] Vidal R., “Anneaux de valuation discrète complets, non nécessairement commutatifs”, C. R. Acad. Sci., Paris. Sér. A–B., 283 (1976) | MR

[337] Vidal R., “Un exemple d'anneax de valuation discrète complet, non commutatif quin'est pas un anneau de Cohen”, C. R. Acad. Sci., Paris, Sér. A–B., 284 (1977) | MR

[338] Vidal R., “Anneaux de valuation discrète complets non commutatifs”, Trans. Am. Math. Soc., 267:1 (1981), 65–81 | MR | Zbl

[339] Vinsonhaler C., “$E$-rings and related structures”, Non-Noetherian commutative ring theory, v. 520, Math. Apl., Kluwer–Dordrecht, 2002, 387–402 | MR

[340] Vinsonhaler C., Wickless W., “Dualities for torsion-free Abelian groups of finite rank”, J. Algebra., 128:2 (1990), 474–487 | DOI | MR | Zbl

[341] Walker C. L., “Local quasi-endomorphism rings of rank one mixed Abelian groups”, Lect. Notes Math., 616 (1977), 368–378 | DOI | MR | Zbl

[342] Walker C. L., Warfield R. B., Jr., “Unique decomposition and isomorphic refinement theorems in additive categories”, J. Pure Appl. Algebra., 7 (1976), 347–359 | DOI | MR | Zbl

[343] Walker E. A., “Ulm's theorem for totally projective groups”, Proc. Am. Math. Soc., 37 (1973), 387–392 | MR | Zbl

[344] Walker E. A., “The groups $P_{\beta}$”, Symposia Mathematica XIII. Gruppi Abeliani, Academic Press, London, 1974, 245–255 | MR

[345] Wallace K. D., “On mixed groups of torsion free rank one with totally projective primary components”, J. Algebra., 17 (1971), 482–488 | DOI | MR | Zbl

[346] Warfied R. B., Jr., “Homomorphisms and duality for torsion-free groups”, Math. Z., 107 (1968), 189–200 | DOI | MR

[347] Warfield R. B., Jr., “A Krull–Schmidt theorem for infinite sums of modules”, Proc. Am. Math. Soc., 22:2 (1969), 460–465 | DOI | MR | Zbl

[348] Warfield R. B., Jr., “Decompositions of injective modules”, Pac. J. Math., 31 (1969), 263–276 | DOI | MR | Zbl

[349] Warfield R. B., Jr., “An isomorphic refinement theorem for Abelian groups”, Pac. J. Math., 34:1 (1970), 237–255 | DOI | MR | Zbl

[350] Warfield R. B., Jr., “Exchange rings and decomposition of modules”, Math. Ann., 199 (1972), 31–36 | DOI | MR | Zbl

[351] Warfield R. B., Jr., “Classification theorems for $p$-groups and modules over a discrete valuation ring”, Bull. Am. Math. Soc., 78:1 (1972), 88–92 | DOI | MR | Zbl

[352] Warfield R. B., Jr., “Simply presented groups”, Proc. Special Semester on Abelian Groups, Univ. of Arizona, Tucson, 1972

[353] Warfield R. B., Jr., “A classification theorem for Abelian $p$-groups”, Trans. Am. Math. Soc., 210 (1975), 149–168 | MR | Zbl

[354] Warfield R. B., Jr., “Classification theory of Abelian groups," I: Balanced projectives”, Trans. Am. Math. Soc., 222 (1976), 33–63 | MR | Zbl

[355] Warfied R. B., Jr., “The structure of mixed Abelian groups”, Lect. Notes Math., 616 (1977), 1–38 | DOI | MR

[356] Warfield R. B., Jr., “Cancellation of modules an groups and stable range of endomorphism rings”, Pac. J. Math., 91:2 (1980), 457–485 | DOI | MR | Zbl

[357] Warfield R. B., Jr., “Classification theory of Abelian groups, II: Local theory”, Lect. Notes Math., 874 (1981), 322–349 | DOI | MR | Zbl

[358] Wick B. D., “A projective characterization for $SKT$-modules”, Proc. Am. Math. Soc., 80 (1980), 39–43 | DOI | MR | Zbl

[359] Wick B. D., “A classification theorem for $SKT$-modules”, Proc Am. Math. Soc., 80 (1980), 44–46 | DOI | MR | Zbl

[360] Wilson G. V., “Modules with the summand intersection property”, Commun. Algebra., 14:1 (1986), 21–38 | DOI | MR | Zbl

[361] Wilson G. V., “Additive groups of $T$-rings”, Proc. Am. Math. Soc., 99:2 (1987), 219–220 | MR | Zbl

[362] Wisbauer R., Foundations of Module and Ring Theory, Gordon Breach, Philadelphia, 1991 | MR | Zbl

[363] Wolfson K. G., “An ideal-theoretic characterization of the ring of all linear transformation”, Am. J. Math., 75 (1953), 358–386 | DOI | MR | Zbl

[364] Wolfson K. G., “Isomorphisms of the endomorphism rings of torsion-free modules”, Proc. Am. Math. Soc., 13:5 (1962), 712–714 | DOI | MR

[365] Wolfson K. G., “Isomorphisms of the endomorphism ring of a free module over a principal left ideal domain”, Michigan Math. J., 9 (1962), 69–75 | DOI | MR | Zbl

[366] Wolfson K. G., “Isomorphisms of the endomorphism rings of a class of torsion-free modules”, Proc. Am. Math. Soc., 14:4 (1963), 589–594 | DOI | MR | Zbl

[367] Wolfson K. G., “Anti-isomorphisms of endomorphism rings of locally free modules”, Math. Z., 202 (1989), 151–159 | DOI | MR | Zbl

[368] Zanardo P., “Kurosch invariants for torsion-free modules over Nagata valuation domains”, J. Pure Appl. Algebra., 82 (1992), 195–209 | DOI | MR | Zbl

[369] Zariski O., Samuel P., Commutative Algebra, Van Nostrand, Princeton, 1958, 1960 | MR | Zbl

[370] Z̆emlic̆ka J., “Steadiness is tested by a single module”, Abelian groups, rings and modules, Perth, 2000, 301–308

[371] Zippin L., “Countable torsion groups”, Ann. Math., 36 (1935), 86–99 | DOI | MR