Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_164_a1, author = {P. A. Krylov and A. A. Tuganbaev}, title = {Modules over discrete valuation domains. {III}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {74--95}, publisher = {mathdoc}, volume = {164}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/} }
TY - JOUR AU - P. A. Krylov AU - A. A. Tuganbaev TI - Modules over discrete valuation domains. III JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 74 EP - 95 VL - 164 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/ LA - ru ID - INTO_2019_164_a1 ER -
%0 Journal Article %A P. A. Krylov %A A. A. Tuganbaev %T Modules over discrete valuation domains. III %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 74-95 %V 164 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/ %G ru %F INTO_2019_164_a1
P. A. Krylov; A. A. Tuganbaev. Modules over discrete valuation domains. III. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 164 (2019), pp. 74-95. http://geodesic.mathdoc.fr/item/INTO_2019_164_a1/
[1] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy separabelnykh abelevykh grupp”, Fundam. prikl. mat., 4:4 (1998), 1281–1307 | MR
[2] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp bez krucheniya i ikh reshetki”, Fundam. prikl. mat., 6:3 (2000), 747–759 | MR
[3] Grinshpon S. Ya., Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost, diss. na soisk. uch. step. dokt. fiz.-mat. nauk., Tomsk, 2000 | Zbl
[4] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost”, Fundam. prikl. mat., 8:2 (2002), 407–473 | MR | Zbl
[5] Grinshpon S. Ya., Misyakov V. M., “O vpolne tranzitivnykh abelevykh gruppakh”, Abelevy gruppy i moduli, v. 6, Tomsk, 1986, 12–27
[6] Davydova O. I., “Faktorno delimye gruppy ranga 1”, Fundam. prikl. mat., 13:3 (2007), 25–33
[7] Dobrusin Yu. B., Abelevy gruppy, blizkie k algebraicheski kompaktnym, diss. na soisk. uch. step. kand. fiz.-mat. nauk., Tomsk, 1981
[8] Eraskina A. P., “O $\lambda$-chistote modulei nad koltsami diskretnogo normirovaniya”, Sib. mat. zh., 14 (1973), 208–212 | MR | Zbl
[9] Ivanov A. V., “Ob odnoi probleme abelevykh grupp”, Mat. sb., 105 (147):4 (1978), 525–542 | MR | Zbl
[10] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. mat. zh., 24:2 (1983), 77–84 | MR | Zbl
[11] Krylov P. A., “Vpolne tranzitivnye abelevy gruppy bez krucheniya”, Algebra i logika., 29:5 (1990), 549–560 | MR | Zbl
[12] Krylov P. A., Koltsa endomorfizmov i strukturnaya teoriya abelevykh grupp, diss. na soisk. uch. step. dokt. fiz.mat nauk., Tomsk, 1991
[13] Krylov P. A., “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fundam. prikl. mat., 6:3 (2000), 793–812 | MR | Zbl
[14] Krylov P. A., “Affinnye gruppy modulei i ikh avtomorfizmy”, Algebra i logika., 40:1 (2001), 60–82 | MR | Zbl
[15] Krylov P. A., “Nasledstvennye koltsa endomorfizmov smeshannykh abelevykh grupp”, Sib. mat. zh., 43:1 (2002), 108–119 | MR | Zbl
[16] Krylov P. A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy”, Algebra i logika., 43:1 (2004), 60–76 | MR | Zbl
[17] Krylov P. A., Klassen E. D., “Tsentr koltsa endomorfizmov rasscheplyayuscheisya smeshannoi abelevoi gruppy”, Sib. mat. zh., 40:5 (1999), 1074–1085 | MR | Zbl
[18] Krylov P. A., Pakhomova E. G., “Abelevy gruppy i regulyarnye moduli”, Mat. zametki., 69:3 (2001), 402–411 | DOI | MR | Zbl
[19] Krylov P. A., Tuganbaev A. A., “Idempotentnye funktory i lokalizatsii v kategoriyakh modulei i abelevykh grupp”, Fundam. prikl. mat., 16:7 (2010), 75–159
[20] Krylov P. A., Tuganbaev A. A., Tsarev A. V., “Vokrug Teoremy Bera—Kaplanskogo”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 159 (2019), 46–67
[21] Krylov P. A., Chekhlov A. R., “Abelevy gruppy bez krucheniya s bolshim chislom endomorfizmov”, Tr. Mat. in-ta im. V. A. Steklova., 2001, no. 2, 156–168 | MR
[22] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Mat. sb., 9 (51):1 (1941), 165–181
[23] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Mat. sb., 16 (58):2 (1945), 129–162 | Zbl
[24] Kulikov L. Ya., “Obobschennye primarnye gruppy, I”, Tr. Mosk. mat. o-va., 1 (1952), 247–326 | MR | Zbl
[25] Kulikov L. Ya., “Obobschennye primarnye gruppy, II”, Tr. Mosk. mat. o-va., 2 (1953), 85–167 | MR
[26] Markov V. T., Mikhalev A. V., Skornyakov L. A., Tuganbaev A. A., “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhn. Ser. Algebra. Topologiya. Geometriya., 21 (1983), 183–254 | MR | Zbl
[27] Misyakov V. M., Polnaya trnazitivnost abelevykh grupp, diss. na soisk. uch. step. kand. fiz.-mat nauk., Tomsk, 1992
[28] Prikhodovskii M. A., Izomorfizmy tenzornykh proizvedenii modulei i $T$-modulei, diss. na soisk. uch. step. kand. fiz.-mat nauk., Tomsk, 2002
[29] Puninskii G. E., Tuganbaev A. A., Koltsa i moduli, Soyuz, M., 1998 | MR
[30] Timoshenko E. A., “$T$-radikaly i $E$-radikaly v kategorii modulei”, Sib. mat. zh., 45:1 (2004), 201–210 | MR | Zbl
[31] Timoshenko E. A., Tsarev A. V., “Posledovatelnosti grupp endomorfizmov abelevykh grupp”, Mat. zametki., 104:2 (2018), 309–317 | DOI | Zbl
[32] Tuganbaev A. A., “Maloproektivnye moduli”, Sib. mat. zh., 21:5 (1980), 109–113 | MR | Zbl
[33] Tuganbaev A. A., “Polutsepnye koltsa i moduli”, Mat. zametki., 48:2 (1990), 99–106 | Zbl
[34] Fomin A. A., “Abelevy gruppy so svobodnymi podgruppami beskonechnogo indeksa i ikh koltsa endomorfizmov”, Mat. zametki., 36:2 (1984), 179–187 | MR | Zbl
[35] Fomin A. A., “Dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Sib mat. zh., 27:4 (1986), 117–127 | MR | Zbl
[36] Fomin A. A., “Chistye svobodnye gruppy”, Abelevy gruppy i moduli, v. 6, Tomsk, 1986, 145–164
[37] Fomin A. A., “Invarianty i dvoistvennost v nekotorykh klassakh abelevykh grupp bez krucheniya konechnogo ranga”, Algebra i logika., 26:1 (1987), 63–83 | MR
[38] Friger M. D., “O zhestkikh koltsakh bez krucheniya”, Sib. mat. zh., 27:3 (1986), 217–219 | MR | Zbl
[39] Tsarev A. V., “$T$-koltsa i faktorno delimye gruppy ranga $1$”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 4 (24) (2013), 50–53
[40] Chekhlov A. R., “O razlozhimykh vpolne tranzitivnykh gruppakh bez krucheniya”, Sib. mat. zh., 42:3 (2001), 714–719 | MR | Zbl
[41] Chekhlov A. R., “Ob odnom klasse endotranzitivnykh grupp”, Mat. zametki., 69:6 (2001), 944–949 | DOI | Zbl
[42] Chekhlov A. R., “Vpolne tranzitivnye gruppy bez krucheniya konechnogo $p$-ranga”, Algebra i logika., 40:6 (2001), 698–715 | MR | Zbl
[43] Chekhlov A. R., Abelevy gruppy s bolshim chislom endomorfizmov, diss. na soisk. uch. step. dokt. fiz.-mat. nauk., Tomsk, 2003
[44] Yakovlev A. V., “O pryamykh razlozheniyakh $p$-adicheskikh grupp”, Algebra i analiz., 12:6 (2000), 217–223
[45] Yakovlev A. V., “O pryamykh razlozheniyakh $S$-lokalnykh grupp”, Algebra i analiz., 13:4 (2001), 229–253
[46] Ali M. M., “Invertibility of multiplication modules”, New Zealand J. Math., 35 (2006), 17–29 | MR | Zbl
[47] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer-Verlag, New York, 1974 | MR | Zbl
[48] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the Theory of Topological Rings and Modules, Marcel Dekker, New York, 1995 | MR
[49] Arnold D., “A duality for torsion-free modules of finite rank over a discrete valuation ring”, Proc. London Math. Soc., 24 (1972), 204–216 | DOI | MR | Zbl
[50] Arnold D., “A duality for quotient divisible Abelian groups of finite rank”, Pac. J. Math., 42 (1972), 11–15 | DOI | MR | Zbl
[51] Arnold D., “Exterior powers and torsion free modules over discrete valuation rings”, Trans. Am. Math. Soc., 170 (1972), 471–481 | DOI | MR | Zbl
[52] Arnold D., “Finite rank torsion-free Abelian groups and rings”, Lect. Notes Math., 931 (1982), 1–191 | DOI | MR
[53] Arnold D., “A finite global Azumaya theorem in additive categories”, Proc. Am. Math. Soc., 91:1 (1984), 25–30 | DOI | MR | Zbl
[54] Arnold D., Abelian Groups and Representations of Finite Partially Ordered Sets, Springer-Verlag, New York, 2000 | MR | Zbl
[55] Arnold D., “Direct sums of local torsion-free Abelian groups”, Proc. Am. Math. Soc., 130:6 (2001), 1611–1617 | DOI | MR
[56] Arnold D., Dugas M., “Indecomposable modules over Nagata valuation domains”, Proc. Am. Math. Soc., 122 (1994), 689–696 | DOI | MR | Zbl
[57] Arnold D., Dugas M., “Representation type of posets and finite rank Butler groups”, Colloq. Math., 74 (1997), 299–320 | DOI | MR | Zbl
[58] Arnold D., Dugas M., “Co-purely indecomposable modules over discrete valuation rings”, J. Pure Appl. Algebra., 161 (2001), 1–12 | DOI | MR | Zbl
[59] Arnold D., Dugas M., Rangaswamy K. M., “Finite rank Butler groups and torsion-free modules over a discrete valuation ring”, Proc. Am. Math. Soc., 129 (2001), 325–335 | DOI | MR | Zbl
[60] Arnold D., Dugas M., Rangaswamy K. M., “Torsion-free modules of finite rank over a discrete valuation ring”, J. Algebra., 272:2 (2004), 456–469 | DOI | MR | Zbl
[61] Arnold D., Hunter R., Richman F., “Global Azumaya theorems in additive categories”, J. Pure Appl. Algebra., 16 (1980), 223–242 | DOI | MR | Zbl
[62] Arnold D., Rangaswamy K. M., “Mixed modules of finite torsion-free rank over a discrete valuation domain”, Forum Math., 18:1 (2006), 85–98 | DOI | MR | Zbl
[63] Arnold D., Rangaswamy K. M., Richman F., “Pi-balanced torsion-free modules over a discrete valuation domain”, J. Algebra., 295:1 (2006), 269–288 | DOI | MR | Zbl
[64] Arnold D., Richman F., “Subgroups of finite direct sums of valuated cyclic groups”, J. Algebra., 114:1 (1988), 1–15 | DOI | MR | Zbl
[65] Arnold J., “Power series rings over discrete valuation rings”, Pac. J. Math., 93:1 (1981), 31–33 | DOI | MR | Zbl
[66] Artin E., Geometric Algebra, Interscience Publ., New York, 1957 | MR | Zbl
[67] Astuti P., Wimmer H. K., “Stacked submodules of torsion modules over discrete valuation domains”, Bull. Austr. Math. Soc., 68:3 (2003), 439–447 | DOI | MR | Zbl
[68] Astuti P., Wimmer H. K., “Regular submodules of torsion modules over discrete valuation domains”, arXiv: 1601. 06356v1 [math. AC]
[69] Atiyah M., “On the Krull–Schmidt theorem with applications to sheaves”, Bull. Soc. Math. Fr., 84 (1956), 307–317 | DOI | MR | Zbl
[70] Auslander M., Reiten I., Smalø S. O., Representation Theory of Artin Algebras, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[71] Azumaya G., “Corrections and supplementaries to my paper concerning Krull–Remak–Schmidt's theorem”, Nagoya Math. J., 1 (1950), 117–124 | DOI | MR | Zbl
[72] Baer R., “Abelian groups that are direct summands of every containing Abelian group”, Bull. Am. Math. Soc., 46 (1940), 800–806 | DOI | MR
[73] Baer R., “A unified theory of projective spaces and finite Abelian groups”, Trans. Am. Math. Soc., 52 (1942), 283–343 | DOI | MR | Zbl
[74] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl
[75] Baer R., Linear Algebra and Projective Geometry, Academic Press, New York, 1952 | MR | Zbl
[76] Bass H., Algebraic $K$-Theory, Benjamin, New York, 1968 | MR | Zbl
[77] Beaumont R. A., Pierce R. S., “Torsion-free rings”, Ill. J. Math., 5 (1961), 61–98 | DOI | MR | Zbl
[78] Beaumont R. A., Pierce R. S., “Subrings of algebraic number fields”, Acta Sci. Math. Szeged., 22 (1961), 202–216 | MR | Zbl
[79] Beaumont R. A., Pierce R. S., “Some invariant of $p$-groups”, Michigan Math. J., 11 (1964), 138–149 | MR
[80] Beaumont R. A., Pierce R. S., “Isomorphic direct summands of abelian groups”, Math. Ann., 153:1 (1964), 21–37 | DOI | MR
[81] Blagoveshchenskaya E., Ivanov G., Schultz P., “The Baer–Kaplansky theorem for almost completely decomposable groups”, Contemp. Math., 273 (2001), 85–93 | DOI | MR | Zbl
[82] Bourbaki N., Algébre Commutative, Hermann, Paris, 1961, 1964, 1965 | MR
[83] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl
[84] Breaz S., “On a class of mixed groups with semi-local Walk-endomorphism ring”, Commun. Algebra., 30:9 (2002), 4473–4485 | DOI | MR | Zbl
[85] Carroll D., Goldsmith B., “On transitive and fully transitive Abelian $p$-groups”, Proc. Roy. Irish Acad., 96A:1 (1996), 33–41 | MR | Zbl
[86] Cartan H., Eilenberg S., Homological Algebra, Princeton Univ. Press, Princeton, 1956 | MR | Zbl
[87] Chekhlov A. R., Krylov P. A., “On L. Fuchs' problems 17 and 43”, J. Math. Sci., 143:5 (2007), 3517–3602 | DOI | MR | Zbl
[88] Corner A. L. S., “Every countable reduced torsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 13:3 (1963), 687–710 | DOI | MR | Zbl
[89] Corner A. L. S., “Endomorphism rings of torsion-free Abelian groups”, Proc. Int. Conf. Theory of Groups, Canberra, 1965, 59–60 | MR
[90] Corner A. L. S., “On endomorphism rings of primary Abelian groups”, Quart. J. Math. Oxford., 20:79 (1969), 277–296 | DOI | MR | Zbl
[91] Corner A. L. S., “The independence of Kaplansky's notions of transitivity and full transitivity”, Quart. J. Math. Oxford., 27 (1976), 15–20 | DOI | MR | Zbl
[92] Corner A. L. S., “Fully rigid systems of modules”, Rend. Sem. Mat. Univ. Padova., 82 (1989), 55–66 | MR | Zbl
[93] Corner A. L. S., Göbel R., “Prescribing endomorphism algebras, a unified treatment”, Proc. London Math. Soc., 50:3 (1985), 447–479 | DOI | MR | Zbl
[94] Corner A. L. S., Goldsmith B., “Isomorphic automorphism groups of torsion-free $p$-adic modules”, Abelian Groups, Theory of Modules, and Topology, Marcel Dekker, New York, 1998, 125–130 | MR | Zbl
[95] Crawley P., Hales A. W. paper The structure of torsion Abelian groups given by presentations, Bull. Am. Math. Soc., 74 (1968), 954–956 | DOI | MR | Zbl
[96] Crawley P., Hales A. W., “The structure of Abelian $p$-groups given by certain presentations”, J. Algebra., 12 (1969), 10–23 | DOI | MR | Zbl
[97] Crawley P., Jónsson B., “Refinements for infinite direct decompositions of algebraic systems”, Pac. J. Math., 14 (1964), 797–855 | DOI | MR | Zbl
[98] Dugas M., “On the existence of large mixed modules”, Lect. Notes Math., 1006 (1983), 412–424 | DOI | MR | Zbl
[99] Dugas M., “On the Jacobson radical of some endomorphism rings”, Proc. Am. Math. Soc., 102:4 (1988), 823–826 | DOI | MR | Zbl
[100] Dugas M., “$AA$-rings”, Commun. Algebra., 32:10 (2004), 3853–3860 | DOI | MR | Zbl
[101] Dugas M., Feigelstock S., “$A$-rings”, Colloq. Math., 96:2 (2003), 277–292 | DOI | MR | Zbl
[102] Dugas M., Göbel R., “Every cotorsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 45 (1982), 319–336 | DOI | MR | Zbl
[103] Dugas M., Göbel R., “Every cotorsion-free algebra is an endomorphism algebra”, Math. Z., 181 (1982), 451–470 | DOI | MR | Zbl
[104] Dugas M., Göbel R., “On endomorphism rings of primary Abelian groups”, Math. Ann., 261 (1982), 359–385 | DOI | MR | Zbl
[105] Dugas M., Göbel R., “Endomorphism algebras of torsion modules, II”, Lect. Notes Math., 1006 (1983), 400–411 | DOI | MR | Zbl
[106] Dugas M., Göbel R., “Torsion-free Abelian groups with prescribed finitely topologized endomorphism rings”, Proc. Am. Math. Soc., 90:4 (1984), 519–527 | DOI | MR | Zbl
[107] Dugas M., Göbel R., Goldsmith B., “Representation of algebras over a complete discrete valuation ring”, Quart. J. Math. $(2)$., 35 (1984), 131–146 | DOI | MR | Zbl
[108] Dugas M., Vinsonhaler C., “Two-side $E$-rings”, J. Pure Appl. Algebra., 185 (2003), 87–102 | DOI | MR | Zbl
[109] Eklof P. C., Set-Theoretic Methods in Homological Algebra and Abelian Groups, Presses Univ. Montréal, Montréal, 1980 | MR | Zbl
[110] Eklof P. C., Goodearl K. R., Trlifaj J., “Dually slender modules and steady rings”, Forum. Math., 9:1 (1997), 61–74 | MR | Zbl
[111] Eklof P. C., Mekler A. H., Almost Free Modules. Set-Theoretic Methods, North-Holland Publ., Amsterdam, 1990 | MR | Zbl
[112] Facchini A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Birkhäuser, Basel–Boston–Berlin, 1998 | MR | Zbl
[113] Facchini A., Zanardo P., “Discrete valuation domains and rank of their maximal extensions”, Rend. Sem. Mat. Univ. Padova., 75 (1986), 143–156 | MR | Zbl
[114] Faith C., Algebra: Rings, Modules, and Categories, Springer-Verlag, Berlin, 1973 | MR | Zbl
[115] Faith C., Algebra, Ring Theory, Springer-Verlag, Berlin, 1976 | MR | Zbl
[116] Faticoni T., “Categories of modules over endomorphism rings”, Mem. Am. Math. Soc., 103:492 (1993), 1–140 | MR
[117] Faticoni Th. G., “Direct sums and refinement”, Commun. Algebra., 27:1 (1999), 451–464 | DOI | MR | Zbl
[118] Feigelstock S., “Full subrings of $E$-rings”, Bull. Austr. Math. Soc., 54 (1996), 275–280 | DOI | MR | Zbl
[119] Feigelstock S., “Additive groups of commutative rings”, Quaest. Math., 23:2 (2000), 241–245 | DOI | MR | Zbl
[120] Feigelstock S., Hausen J., Raphael R., “Groups which map onto their endomorphism rings”, Proceedings Dublin Conference, 1998, Basel, 1999, 231–241 | MR
[121] Files S. T., “Mixed modules over incomplete discrete valuation rings”, Commun. Algebra., 21:11 (1993), 4103–4113 | DOI | MR | Zbl
[122] Files S. T., “Endomorphisms of local Warfield groups”, Contemp. Math., 171 (1994), 99–107 | DOI | MR | Zbl
[123] Files S. T., “Outer automorphisms of endomorphism rings of Warfield groups”, Arch. Math., 65 (1995), 15–22 | DOI | MR | Zbl
[124] Files S. T., “Endomorphism algebras of modules with distinguished torsion-free elements”, J. Algebra., 178 (1995), 264–276 | DOI | MR | Zbl
[125] Files S. T., “On transitive mixed Abelian groups”, Lect. Notes Pure Appl. Math., 132 (1996), 243–251 | MR
[126] Files S. T., “Transitivity and full transitivity for nontorsion modules”, J. Algebra., 197 (1997), 468–478 | DOI | MR | Zbl
[127] Files S. T., “The fully invariant subgroups of local Warfield groups”, Proc. Am. Math. Soc., 125:12 (1997), 3515–3518 | DOI | MR | Zbl
[128] Files S., Goldsmith B., “Transitive and fully transitive groups”, Proc. Am. Math. Soc., 126:6 (1998), 1605–1610 | DOI | MR | Zbl
[129] Flagg M., “A Jacobson radical isomorphism theorem for torsion-free modules”, Models, Modules and Abelian Groups, de Gruyter, Berlin, 2008, 309–314 | MR | Zbl
[130] Flagg M., “Jacobson radical isomorphism theorems for mixed modules part one: determining the torsion”, Commun. Algebra., 37:5 (2009), 1739–1747 | DOI | MR | Zbl
[131] Flagg M., “The role of the Jacobson radical in isomorphism theorems”, Contemp. Math., 576 (2012), 77–88 | DOI | MR | Zbl
[132] Flagg M., “The Jacobson radical's role in isomorphism theorems for $p$-adic modules extends to topogical isomorphism”, Groups, Modules, and Model Theory Surveys and Resent Developments, Springer-Verlag, 2017, 285–300 | DOI | MR
[133] Fomin A. A., “The category of quasi-homomorphisms of torsion-free Abelian groups of finite rank”, Contemp. Math., 131 (1992), 91–111 | DOI | MR | Zbl
[134] Fomin A. A., “Finitely presented modules over the ring of universal numbers”, Contemp. Math., 171 (1994), 109–120 | DOI | MR | Zbl
[135] Fomin A., Wickless W., “Categories of mixed and torsion-free Abelian groups”, Abelian Groups and Modules, Kluwer, Boston, 1995, 185–192 | DOI | MR | Zbl
[136] Fomin A., Wickless W., “Quotient divisible Abelian groups”, Proc. Am. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl
[137] Franzen B., Gobel R., “Prescribing endomorphism algebras, the cotorsion-free case”, Rend. Sem. Mat. Univ. Padova., 80 (1989), 215–241 | MR
[138] Franzen B., Goldsmith B., “On endomorphism algebras of mixed modules”, J. London Math. Soc., 31:3 (1985), 468–472 | DOI | MR | Zbl
[139] Franzsen W. N., Schultz P., “The endomorphism ring of locally free module”, J. Austral. Math. Soc. Ser. A., 35 (1983), 308–326 | DOI | MR | Zbl
[140] Fuchs L., “On the structure of Abelian $p$-groups”, Acta Math. Acad. Sci. Hung., 4 (1953), 267–288 | DOI | MR | Zbl
[141] Fuchs L., “Notes on Abelian groups, I”, Ann. Univ. Sci. Budapest., 2 (1959), 5–23 | MR | Zbl
[142] Fuchs L., “Notes on Abelian groups, II”, Acta Math. Acad. Sci. Hung., 11 (1960), 117–125 | DOI | MR | Zbl
[143] Fuchs L., Infinite Abelian Groups. Vols. I, II, Academic Press, New York–London, 1970, 1973 | MR
[144] Fuchs L., Abelian $p$-Groups and Mixed Groups, Univ. of Montreal Press, Montreal, 1980 | MR | Zbl
[145] Fuchs L., Abelian Groups, Springer-Verlag, 2015 | MR | Zbl
[146] Fuchs L., Salce L., “Modules over valuation domains”, Lect. Notes Pure Appl. Math., v. 97, Marcel Dekker, New York, 1985 | MR | Zbl
[147] Fuchs L., Salce L., “Modules over non-Noetherian domains”, v. 84, Math. Surv. Monogr., Am. Math. Soc., Providence, Rhode Island, 2001 | MR
[148] Gabriel P., “Des catégories abéliennes”, Bull. Soc. Math. Fr., 90 (1962), 323–448 | DOI | MR | Zbl
[149] Goeters H. P., “The structure of Ext for torsion-free modules of finite rank over Dedekind domains”, Commun. Algebra., 31:7 (2003), 3251–3263 | DOI | MR | Zbl
[150] Goldsmith B., “Endomorphism rings of torsion-free modules over a complete discrete valuation ring”, J. London Math. Soc., 2:3 (1978), 464–471 | DOI | MR
[151] Goldsmith B., “Essentially-rigid families of Abelian $p$-groups”, J. London Math. Soc. $(2)$., 18 (1978), 70–74 | DOI | MR | Zbl
[152] Goldsmith B., “Essentially indecomposable modules over a complete discrete valuation ring”, Rend. Sem. Mat. Univ. Padova., 70 (1983), 21–29 | MR
[153] Goldsmith B., “An essentially semi-rigid class of modules”, J. London Math. Soc. $(2)$., 29:3 (1984), 415–417 | DOI | MR | Zbl
[154] Goldsmith B., “On endomorphisms and automorphisms of some torsion-free modules”, Abelian Group Theory, Gordon Breach, New York, 1987, 417–423 | MR
[155] Goldsmith B., “On endomorphism rings of non-separable Abelian $p$-groups”, J. Algebra., 127 (1989), 73–79 | DOI | MR | Zbl
[156] Goldsmith B., May W., “The Krull–Schmidt problem for modules over valuation domains”, J. Pure Appl. Algebra., 140:1 (1999), 57–63 | DOI | MR | Zbl
[157] Goldsmith B., Pabst S., Scott A., “Unit sum numbers of rings and modules”, Quart. J. Math., 49 (1998), 331–344 | DOI | MR | Zbl
[158] Goldsmith B., Zanardo P., “On the analogue of Corner's finite rank theorem for modules over valuation domains”, Arch. Math., 60:1 (1993), 20–24 | DOI | MR | Zbl
[159] Goldsmith B., Zanardo P., “The Walker endomorphism algebra of a mixed module”, Proc. Roy. Irish Acad. Sect. A., 93:1 (1993), 131–136 | MR | Zbl
[160] \label{[104]} Goldsmith B., Zanardo P., “Endomorphism rings and automorphism groups of separable torsion-free modules over valuation domains”, Abelian Groups, Theory of Modules, and Topology, Marcel Dekker, New York, 1998, 249–260 | MR | Zbl
[161] Goodearl K. R., Ring Theory, Marcel Dekker, New York–Basel, 1976 | MR | Zbl
[162] Göbel R., “Endomorphism rings of Abelian groups”, Lect. Notes Math., 1006 (1983), 340–353 | DOI | MR | Zbl
[163] Göbel R., “Modules with distinguished submodules and their endomorphism algebras”, Abelian Groups, Marcel Dekker, New York, 1993, 55–64 | MR | Zbl
[164] Göbel R., Goldsmith B., “Essentially indecomposable modules which are almost free”, Quart. J. Math. Oxford $(2)$., 39 (1988), 213–222 | DOI | MR | Zbl
[165] Göbel R., Goldsmith B., “Mixed modules in $L$”, Rocky Mountain J. Math., 19 (1989), 1043–1058 | DOI | MR | Zbl
[166] Göbel R., Goldsmith B., “On almost-free modules over complete discrete valuation rings”, Rend. Sem. Mat. Univ. Padova., 86 (1991), 75–87 | MR | Zbl
[167] Göbel R., Goldsmith B., “On separable torsion-free modules of countable density character”, J. Algebra., 144 (1991), 79–87 | DOI | MR | Zbl
[168] Göbel R., Goldsmith B., “Cotorsion-free algebras as endomorphism algebras in $L$ — the discrete and topological cases”, Comment. Math. Univ. Carolinae., 34:1 (1993), 1–9 | MR | Zbl
[169] Göbel R., May W., “The construction of mixed modules from torsion modules”, Arch. Math., 48 (1987), 476–490 | DOI | MR | Zbl
[170] Göbel R., May W., “Independence in completions and endomorphism algebras”, Forum Math., 1 (1989), 215–226 | DOI | MR | Zbl
[171] Göbel R., Opdenhövel A., “Every endomorphism of a local Warfield module of finite torsion-free rank is the sum of two automorphisms”, J. Algebra., 233 (2000), 758–771 | DOI | MR | Zbl
[172] Göbel R., Paras A., “Splitting off free summand of torsion-free modules over complete dvrs”, Glasgow Math. J., 44 (2002), 349–351 | DOI | MR | Zbl
[173] Göbel R., Shelah S., Strüngmann L., “Generalized $E$-Rings”, 2003, arXiv: arxiv.org/pdf/math/0404271
[174] Göbel R., Shelah S., Strüngmann L., “$\aleph_n$-Free modules over complete discrete valuation domains with almost trivial duals”, Glasgow Math. J., 55 (2013), 369–380 | DOI | MR | Zbl
[175] Göbel R., Trlifaj J., “Approximations and Endomorphism Algebras of Modules”, Expos. Math., 41, de Gruyter, Berlin, 2006 | MR | Zbl
[176] Göbel R., Wald B., “Separable torsion-free modules of small type”, Houston J. Math., 16 (1990), 271–287 | MR
[177] Grätzer G., General Lattice Theory, Academie-Verlag, Berlin, 1978 | MR | Zbl
[178] Griffith P., “Transitive and fully transitive primary Abelian groups”, Pac. J. Math., 25 (1968), 249–254 | DOI | MR | Zbl
[179] Griffith P. A., Infinite Abelian Group Theory, Univ. of Chicago Press, Chicago–London, 1970 | MR | Zbl
[180] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl
[181] Grishin A. V., “Strongly indecomposable localizations of the ring of algebraic integers”, Commun. Algebra, 43:9 (2015), 3816–3822 | DOI | MR | Zbl
[182] Grishin A. V., Tsarev A. V., “$\mathcal{E}$-closed groups and modules”, J. Math. Sci. (New York), 186:4 (2012), 592–598 | DOI | MR | Zbl
[183] Gubareni N., “Valuation and discrete valuation rings”, Sci. Res. Inst. Math. Comp. Sci., 10:1 (2011), 61–70
[184] Harada M., Factor Categories with Applications to Direct Decomposition of Modules, Marcel Dekker, New York, 1983 | MR | Zbl
[185] Harrison D. K., “Infinite Abelian groups and homological methods”, Ann. Math., 69:2 (1959), 366–391 | DOI | MR | Zbl
[186] Harrison D. K., “On the structure of $\operatorname{Ext}$”, Topics in Abelian Groups, Scott Foresman and Co., Chicago, 1963, 195–209 | MR
[187] Hausen J., “Modules with the summand intersection property”, Commun. Algebra., 17:1 (1989), 135–148 | DOI | MR | Zbl
[188] Hausen J., Johnson J. A., “Determining Abelian $p$-groups by the Jacobson radical of their endomorphism rings”, J. Algebra., 174 (1995), 217–224 | DOI | MR | Zbl
[189] Hausen J., Praeger C. E., Schultz P., “Most Abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216 (1994), 431–436 | DOI | MR | Zbl
[190] Hennecke G., Strüngmann L., “Transitivity and full transitivity for $p$-local modules”, Arch. Math., 74 (2000), 321–329 | DOI | MR | Zbl
[191] Herstein I. N., Noncommutative Rings, Wiley, New York, 1968 | MR | Zbl
[192] Hill P., “Sums of countable primary groups”, Proc. Am. Math. Soc., 17 (1966), 1469–1470 | MR | Zbl
[193] Hill P., “Ulm's theorem for totally projective groups”, Not. Am. Math. Soc., 14 (1967), 940
[194] Hill P., “On transitive and fully transitive primary groups”, Proc. Am. Math. Soc., 22 (1969), 414–417 | DOI | MR | Zbl
[195] Hill P., “Endomorphism rings generated by units”, Trans. Am. Math. Soc., 141 (1969), 99–105 | DOI | MR | Zbl
[196] Hill P., “The classification problem”, Abelian Groups and Modules, Springer-Verlag, Vienna, 1984, 1–16 | MR
[197] Hill P., Lane M., Megibben C., “On the structure of $p$-local groups”, J. Algebra., 143 (1991), 29–45 | DOI | MR | Zbl
[198] Hill P., Megibben C., “On the theory and classification of Abelian $p$-groups”, Math. Z., 190 (1985), 17–38 | DOI | MR | Zbl
[199] Hill P., Megibben C., “Axiom 3 modules”, Trans. Am. Math. Soc., 295:2 (1986), 715–734 | MR | Zbl
[200] Hill P., Megibben C., “Torsion-free groups”, Trans. Am. Math. Soc., 295 (1986), 735–751 | DOI | MR | Zbl
[201] Hill P., Megibben C., “Mixed groups”, Trans. Am. Math. Soc., 334 (1992), 121–142 | DOI | MR | Zbl
[202] Hill P., Ullery W., “The transitivity of local Warfied groups”, J. Algebra., 208 (1998), 643–661 | DOI | MR | Zbl
[203] Hill P., Ullery W., “Isotype subgroups of local Warfield groups”, Commun. Algebra., 29:5 (2001), 1899–1907 | DOI | MR | Zbl
[204] Hill P., West J. K., “Subgroup transitivity in Abelian groups”, Proc. Am. Math. Soc., 126:5 (1998), 1293–1303 | DOI | MR | Zbl
[205] Hunter R., “Balanced subgroups of Abelian groups”, Trans. Am. Math. Soc., 215 (1976), 81–98 | DOI | MR | Zbl
[206] Hunter R., Richman F., “Global Warfield groups”, Trans. Am. Math. Soc., 266:1 (1981), 555–572 | DOI | MR | Zbl
[207] Hunter R., Richman F., Walker E., “Warfield modules”, Lect. Notes Math., 616 (1977), 87–123 | DOI | MR | Zbl
[208] Hunter R., Richman F., Walker E., “Existence theorems for Warfield groups”, Trans. Am. Math. Soc., 235 (1978), 345–362 | DOI | MR | Zbl
[209] Hunter R., Walker E., “$S$-groups revisited”, Proc. Am. Math. Soc., 82 (1981), 13–18 | MR | Zbl
[210] Irwan S. E., Garminia H., Astuti P., “On valuations of vector spaces”, JP J. Alg. Number Theory Appl., 38:6 (2016), 633–646 | Zbl
[211] Jacobson N., Structure of Rings, Am. Math. Soc., Providence, Rhode Island, 1968 | MR
[212] Jarisch R., Mutzbauer O., Toubassi E., “Calculating indicators in a class of mixed modules”, Lect. Notes Pure Appl. Math., 182 (1996), 291–301 | MR | Zbl
[213] Jaballah A., “Integral domains whose overrings are dicrete valuation rings”, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), 62:2 (2016), 361–369 | MR | Zbl
[214] Jarisch R., Mutzbauer O., Toubassi E., “Characterizing a class of simply presented modules by relation arrays”, Arch. Math., 71 (1998), 349–357 | DOI | MR | Zbl
[215] Jarisch R., Mutzbauer O., Toubassi E., “Characterizing a class of Warfield modules by relation arrays”, Rocky Mountain J. Math., 30:4 (2000), 1293–1314 | DOI | MR | Zbl
[216] Jarisch R., Mutzbauer O., Toubassi E., “Characterizing a class of Warfield modules by Ulm submodules and Ulm factors”, Arch. Math., 76 (2001), 326–336 | DOI | MR
[217] Jech T., Set Theory, Academic Press, New York, 1978 | MR | Zbl
[218] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press; Ann Arbor, Michigan, 1954 | MR | Zbl
[219] Kaplansky I., “Projective modules”, Ann. Math., 68 (1958), 372–377 | DOI | MR | Zbl
[220] Kaplansky I., “Modules over Dedekind rings and valuation rings”, Trans. Am. Math. Soc., 72 (1952), 327–340 | DOI | MR | Zbl
[221] Kaplansky I., Mackey G., “A generalization of Ulm's theorem”, Summa Brasil. Math., 2 (1951), 195–202 | MR | Zbl
[222] Kasch F., Modules and Rings, Academic Press, London–New York, 1982 | MR | Zbl
[223] Keef P., “An equivalence for categories of modules over a complete discrete valuation domain”, Rocky Mountain J. Math., 27:3 (1997), 843–860 | DOI | MR | Zbl
[224] Kolettis G., Jr., “Direct sums of countable groups”, Duke Math. J., 27 (1960), 111–125 | DOI | MR | Zbl
[225] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Endomorphism rings of Abelian groups”, J. Math. Sci., 110:3 (2002), 2683–2745 | DOI | MR | Zbl
[226] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003 | MR | Zbl
[227] Krylov P. A., Tuganbaev A. A., “Modules over discrete valuation domains, I”, J. Math. Sci., 145:4 (2007), 4997–5117 | DOI | MR | Zbl
[228] Krylov P. A., Tuganbaev A. A., “Modules over discrete valuation domains, II”, J. Math. Sci., 151:5 (2008), 3255–3371 | DOI | MR | Zbl
[229] Krylov P. A., Tuganbaev A. A., Formal Matrices, Springer-Verlag, 2017 | MR | Zbl
[230] Kurosh A. G., “Primitive torsionsfreie abelsche gruppen vom endlichen range”, Ann. Math., 38 (1937), 175–203 | DOI | MR | Zbl
[231] Kurosh A. G., The Theory of Groups, Chelsea Publ., New York, 1960 | MR
[232] Lady E. L., “On classifying torsion free modules over discrete valuation rings”, Lect. Notes Math., 616 (1977), 168–172 | DOI | MR | Zbl
[233] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, I”, J. Algebra., 49 (1977), 261–275 | DOI | MR | Zbl
[234] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, II”, J. Algebra., 66 (1980), 281–306 | DOI | MR | Zbl
[235] Lady E. L., “Splitting fields for torsion-free modules over discrete valuation rings, III”, J. Algebra., 66 (1980), 307–320 | DOI | MR | Zbl
[236] Lam T. Y., A First Cource in Noncommutative Rings, Springer-Verlag, New York, 1991 | MR
[237] Lambek J., Lecture on Rings and Modules, Blaisdell Publ., Waltham, 1968 | MR
[238] Lane M., “A new charterization for $p$-local balanced projective groups”, Proc. Am. Math. Soc., 96 (1986), 379–386 | MR | Zbl
[239] Lane M., “Isotype submodules of $p$-local balanced projective groups”, Trans. Am. Math. Soc., 301:1 (1987), 313–325 | MR | Zbl
[240] Lane M., “Fully invariant submodules of $p$-local balanced projective groups”, Rocky Mountain J. Math., 18:4 (1988), 833–841 | DOI | MR | Zbl
[241] Lane M., Megibben C., “Balance projectives and Axiom 3”, J. Algebra., 111 (1987), 457–474 | DOI | MR | Zbl
[242] Leptin H., “Abelsche $p$-gruppen und ihre Automorphismengruppen”, Math. Z., 73 (1960), 235–253 | DOI | MR | Zbl
[243] Levy L., “Torsion-free and divisible modules over non-integral domains”, Can. J. Math., 15:1 (1963), 132–151 | DOI | MR | Zbl
[244] Liebert W., “Endomorphism rings of Abelian $p$-groups”, Études sur les Groupes Abéliens, Springer-Verlag, Berlin, 1968, 239–258 | DOI | MR
[245] Liebert W., “Characterization of the endomorphism rings of divisible torsion modules and reduced complete torsion-free modules over complete discrete valuation rings”, Pac. J. Math., 37:1 (1971), 141–170 | DOI | MR
[246] Liebert W., “Endomorphism rings of reduced torsion-free modules over complete discrete valuation rings”, Trans. Am. Math. Soc., 169 (1972), 347–363 | DOI | MR | Zbl
[247] Liebert W., “Endomorphism rings of reduced complete torsion-free module over complete discrete valuation rings”, Proc. Am. Math. Soc., 36:1 (1972), 375–378 | DOI | MR
[248] Liebert W., “The Jacobson radical of some endomorphism rings”, J. Reine Angew. Math., 262/263 (1973), 166–170 | MR | Zbl
[249] Liebert W., “On-sided ideals in the endomorphism rings of reduced complete torsion-free modules and divisible torsion modules over complete discrete valuation rings”, Symp. Math., 13 (1974), 273–298 | MR | Zbl
[250] Liebert W., “Endomorphism rings of free modules over principal ideal domains”, Duke Math. J., 41 (1974), 323–328 | DOI | MR | Zbl
[251] Liebert W., “Endomorphism rings of Abelian $p$-groups”, Lect. Notes Math., 1006 (1983), 384–399 | DOI | MR | Zbl
[252] Liebert W., “Isomorphic automorphism groups of primary Abelian groups”, Abelian Group Theory, Gordon Breach, New York, 1987, 9–31 | MR
[253] Loth P., Classification of Abelian Groups and Pontryagin Duality, Gordon Breach, Amsterdam, 1998 | MR
[254] Loth P., “Characterizations of Warfield groups”, J. Algebra., 204 (1998), 32–41 | DOI | MR | Zbl
[255] MacLane S., Homology, Academic Press, New York, 1963 | MR
[256] MacLane S., Categories for the Working Mathematician, Springer-Verlag, Berlin, 1971 | MR
[257] Mader A., Almost Completely Decomposable Groups, Gordon Breach, Amsterdam, 1998 | MR
[258] Mader A., Vinsonhaler C., “Torsion-free $E$-modules”, J. Algebra., 115:2 (1988), 401–411 | DOI | MR | Zbl
[259] Matlis E., “Cotorsion modules”, Mem. Am. Math. Soc., 49 (1964) | MR | Zbl
[260] Matlis E., “The decomposability of torsion-free modules of finite rank”, Trans. Am. Math. Soc., 134:2 (1968), 315–324 | DOI | MR | Zbl
[261] May W., “Endomorphism rings of mixed Abelian groups”, Contemp. Math., 87 (1989), 61–74 | DOI | MR | Zbl
[262] May W., “Isomorphism of endomorphism algebras over complete discrete valuation rings”, Math. Z., 204 (1990), 485–499 | DOI | MR | Zbl
[263] May W., “Endomorphism algebras of not necessarily cotorsion-free modules”, Abelian Groups and Noncommutative Rings, Am. Math. Soc., Providence, Rhode Island, 1992, 257–264 | MR
[264] May W., “Endomorphisms over incomplete discrete valuation domains”, Contemp. Math., 171 (1994), 277–285 | DOI | MR | Zbl
[265] May W., “The theorem of Baer and Kaplansky for mixed modules”, J. Algebra., 177 (1995), 255–263 | DOI | MR | Zbl
[266] May W., “The use of the finite topology on endomorphism rings”, J. Pure Appl. Algebra., 163 (2001), 107–117 | DOI | MR | Zbl
[267] May W., “Torsion-free modules with nearly unique endomorphism algebras”, Commun. Algebra., 31:3 (2003), 1271–1278 | DOI | MR | Zbl
[268] May W., Toubassi E., “Endomorphisms of rank one mixed modules over discrete valuation rings”, Pac. J. Math., 108:1 (1983), 155–163 | DOI | MR | Zbl
[269] May W., Zanardo P., “Modules over domains large in a complete discrete valuation ring”, Rocky Mountain J. Math., 30:4 (2000), 1421–1436 | DOI | MR | Zbl
[270] Megibben C., “Large subgroups and small homomorphisms”, Michigan Math. J., 13 (1966), 153–160 | DOI | MR | Zbl
[271] Megibben C., “Modules over an incomplete discrete valuation ring”, Proc. Am. Math. Soc., 19 (1968), 450–452 | DOI | MR | Zbl
[272] Megibben C., “A nontransitive, fully transitive primary group”, J. Algebra., 13 (1969), 571–574 | DOI | MR | Zbl
[273] van der Merwe B., “Unique addition modules”, Commun. Algebra., 27:9 (1999), 4103–4115 | DOI | MR | Zbl
[274] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, First Int. Tainan–Moscow Algebra Workshop, Tainan, 1994, de Gruyter, Berlin, 1996, 69–122 | MR | Zbl
[275] Mishina A. P., Skornyakov L. A., Abelian Groups and Modules, Am. Math. Soc., Providence, Rhode Island, 1976 | MR | Zbl
[276] Mo Bang C., “A classification of modules over complete discrete valuation rings”, Bull. Am. Math. Soc., 76 (1970), 381–383 | DOI | MR
[277] Mo Bang C., “Countable generated modules over complete discrete valuation rings”, J. Algebra., 14 (1970), 552–560 | DOI | MR | Zbl
[278] Mo Bang C., “Direct sums of countable generated modules over complete discrete valuation rings”, Proc. Am. Math. Soc., 28:2 (1971), 381–388 | DOI | MR | Zbl
[279] Moghaderi J., Nekooei R., “Valuation, discrete valuation and Dedekind modules”, Int. Electron. J. Algebra., 8 (2010), 18–29 | MR | Zbl
[280] Mohamed S. H., Muller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[281] Monk G., “One sided ideals in the endomorphism ring of an Abelian $p$-group”, Acta Math. Acad. Sci., 19 (1968), 171–185 | DOI | MR | Zbl
[282] Moore J. H., “A characterization of Warfield groups”, Proc. Am. Math. Soc., 87 (1983), 617–620 | DOI | MR | Zbl
[283] Mutzbauer O., Toubassi E., “A splitting criterion for a class of mixed modules”, Rocky Mountain J. Math., 24 (1994), 1533–1543 | DOI | MR | Zbl
[284] Mutzbauer O., Toubassi E., “Extending a splitting criterion on mixed modules”, Contemp. Math., 171 (1994), 305–312 | DOI | MR | Zbl
[285] Mutzbauer O., Toubassi E., “Classification of mixed modules”, Acta Math. Hung., 72:1–2 (1996), 153–166 | DOI | MR | Zbl
[286] Nagata M., Local Rings, Wiley, New York, 1962 | MR | Zbl
[287] Nunke R. J., “Modules of extensions over Dedekind rings”, Ill. J. Math., 3 (1959), 222–241 | DOI | MR | Zbl
[288] Nunke R. J., “Purity and subfunctors of the identity”, Topics in Abelian Groups, Chicago–Illinois, 1963, 121–171 | MR
[289] Nunke R. J., “Homology and direct sums of countable Abelian groups”, Math. Z., 101 (1967), 182–212 | DOI | MR | Zbl
[290] Pierce R. S., “Homomorphisms of primary Abelian groups”, Topics in Abelian Groups, Chicago, Illinois, 1963, 215–310 | MR
[291] Pierce R. S., “Endomorphism rings of primary Abelian groups”, Proc. Colloq. Abelian Groups, Académiai Kiadó, Budapest, 1964, 125–137 | MR
[292] Pierce R. S., “$E$-modules”, Abelian group theory, Perth, 1987, 221–240 | MR
[293] Plotkin B. I., Groups of Automorphisms of Algebraic Systems, Wolters-Noordhoff Publ., Groningen, 1972 | MR | Zbl
[294] Procházka L., “A generalization of a Prüfer–Kaplansky theorem”, Lect. Notes Math., 1006 (1983), 617–629 | DOI | MR | Zbl
[295] Prüfer H., “Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen”, Math. Z., 17 (1923), 35–61 | DOI | MR | Zbl
[296] Ribenboim P., “On the completion of a valuation ring”, Math. Ann., 155 (1964), 392–396 | DOI | MR | Zbl
[297] Richman F., “The constructive theory of $KT$-modules”, Pac. J. Math., 61 (1975), 621–637 | DOI | MR
[298] Richman F., “Mixed local groups”, Lect. Notes Math., 874 (1981), 374–404 | DOI | MR | Zbl
[299] Richman F., “Mixed groups”, Lect. Notes Math., 1006 (1983), 445–470 | DOI | MR | Zbl
[300] Richman F., “Nice subgroups of mixed local groups”, Commun. Algebra., 11:1 (1983), 1629–1642 | DOI | MR | Zbl
[301] Richman F., Walker E. A., “Extending Ulm's theorem without group theory”, Proc. Am. Math. Soc., 21 (1969), 194–196 | MR | Zbl
[302] Richman F., Walker E. A., “Filtered modules over discrete valuation domains”, J. Algebra., 199:2 (1998), 618–645 | DOI | MR | Zbl
[303] Rickart C. E., “Isomorphic groups of linear transformations”, Am. J. Math., 72 (1950), 451–464 | DOI | MR | Zbl
[304] Rotman J., “A note on completions of modules”, Proc. Am. Math. Soc., 11 (1960), 356–360 | DOI | MR | Zbl
[305] Rotman J., “Mixed modules over valuation rings”, Pac. J. Math., 10 (1960), 607–623 | DOI | MR | Zbl
[306] Rotman J., “A completion functor on modules and algebras”, J. Algebra., 9 (1968), 369–387 | DOI | MR | Zbl
[307] Rotman J., Yen T., “Modules over a complete discrete valuation ring”, Trans. Am. Math. Soc., 98 (1961), 242–254 | DOI | MR | Zbl
[308] Roux B., “Anneaux non commutatifs de valuation discrète ou finie, scindés, I”, C. R. Acad. Sci. Paris. Sér. I. Math., 302:7 (1986), 259–262 | MR | Zbl
[309] Roux B., “Anneaux non commutatifs de valuation discrète ou finie, scindés, II”, C. R. Acad. Sci. Paris. Sér. I. Math., 302:8 (1986), 291–293 | MR | Zbl
[310] Roux B., “Anneaux non commutatifs de valuation discrète, scindés, en caractéristique zéro”, C. R. Acad. Sci. Paris. Sér. I. Math., 303:14 (1986), 663–666 | MR | Zbl
[311] Roux B., “Hautes $\sigma$-dérivations et anneaux de valuation discrète non commutatifs, en caractéristique zéro”, C. R. Acad. Sci. Paris, Sér. I. Math., 303:19 (1986), 943–946 | MR | Zbl
[312] Roux B., “Anneaux de valuation discrète complets, scindés, non commutatifs, en caractéristique zéro”, Lect. Notes Math., 1296 (1987), 276–311 | DOI | MR | Zbl
[313] Rowen L. H., Ring Theory, Academic Press, New York, 1988 | MR
[314] Salce L., Zanardo P., “Rank-two torsion-free modules over valuation domains”, Rend. Sem. Mat. Univ. Padova., 80 (1988), 175–201 | MR | Zbl
[315] Sands A. D., “On the radical of the endomorphism ring of a primary Abelian group”, Abelian Groups and Modules, Springer-Verlag, Vienna, 1984, 305–314 | MR
[316] Schultz P., “Periodic homomorphism sequences of Abelian groups”, Arch. Math., 21 (1970), 132–135 | DOI | MR | Zbl
[317] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Austr. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl
[318] Schultz P., “Notes on mixed groups, I”, Abelian Groups and Modules, Springer-Verlag, Vienna, 1984, 265–278 | MR
[319] Schultz P., “Notes on mixed groups, II”, Rend. Sem. Mat. Univ. Padova., 75 (1986), 67–76 | MR | Zbl
[320] Schultz P., “When is an Abelian $p$-group determined by the Jacobson radical of its endomorphism ring?”, Contemp. Math., 171 (1994), 385–396 | DOI | MR | Zbl
[321] Schultz P., “Automorphisms which determine an Abelian $p$-group”, Abelian Groups, Theory of Modules, and Topology, Marcel Dekker, New York, 1998, 373–379 | MR | Zbl
[322] Stefanescu D., “On the factorization of polynomials over discrete valuation domains”, An. St. Univ. Ovidius Constanta., 22:1 (2014), 273–280 | MR | Zbl
[323] Stanton R. O., “An invariant for modules over a discrete valuation ring”, Proc. Am. Math. Soc., 49:1 (1975), 51–54 | DOI | MR | Zbl
[324] Stanton R. O., “Decomposition bases and Ulm's theorem”, Lect. Notes Math., 616 (1977), 39–56 | DOI | MR | Zbl
[325] Stanton R. O., “Relative $S$-invariants”, Proc. Am. Math. Soc., 65 (1977), 221–224 | MR | Zbl
[326] Stanton R. O., “Decomposition of modules over a discrete valuation ring”, J. Austr. Math. Soc., 27 (1979), 284–288 | DOI | MR
[327] Stanton R. O., “Almost affable Abelian groups”, J. Pure Appl. Alg., 15 (1979), 41–52 | DOI | MR | Zbl
[328] Stratton A. E., “Mixed modules over an incomplete discrete valuation ring”, Proc. London Math. Soc., 21 (1970), 201–218 | DOI | MR | Zbl
[329] Stratton A. E., “A note on the splitting problem for modules over an incomplete discrete valuation ring”, Proc. London Math. Soc. (3)., 23 (1971), 237–250 | DOI | MR | Zbl
[330] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998 | MR | Zbl
[331] Tuganbaev A. A., Distributive Modules and Related Topics, Gordon Breach, Amsterdam, 1999 | MR | Zbl
[332] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002 | MR | Zbl
[333] Ulm H., “Zur Theorie der abzählbar-unendlichen abelschen Gruppen”, Math. Ann., 107 (1933), 774–803 | DOI | MR
[334] Underwood R. G., “Galois theory of modules over a discrete valuation ring”, Recent Research on Pure and Applied Algebra, Nova Sci. Publ., Hauppauge, 2003, 23–45 | MR | Zbl
[335] Vámos P., “Decomposition problems for modules over valuation domains”, J. London Math. Soc., 41 (1990), 10–26 | DOI | MR | Zbl
[336] Vidal R., “Anneaux de valuation discrète complets, non nécessairement commutatifs”, C. R. Acad. Sci., Paris. Sér. A–B., 283 (1976) | MR
[337] Vidal R., “Un exemple d'anneax de valuation discrète complet, non commutatif quin'est pas un anneau de Cohen”, C. R. Acad. Sci., Paris, Sér. A–B., 284 (1977) | MR
[338] Vidal R., “Anneaux de valuation discrète complets non commutatifs”, Trans. Am. Math. Soc., 267:1 (1981), 65–81 | MR | Zbl
[339] Vinsonhaler C., “$E$-rings and related structures”, Non-Noetherian commutative ring theory, v. 520, Math. Apl., Kluwer–Dordrecht, 2002, 387–402 | MR
[340] Vinsonhaler C., Wickless W., “Dualities for torsion-free Abelian groups of finite rank”, J. Algebra., 128:2 (1990), 474–487 | DOI | MR | Zbl
[341] Walker C. L., “Local quasi-endomorphism rings of rank one mixed Abelian groups”, Lect. Notes Math., 616 (1977), 368–378 | DOI | MR | Zbl
[342] Walker C. L., Warfield R. B., Jr., “Unique decomposition and isomorphic refinement theorems in additive categories”, J. Pure Appl. Algebra., 7 (1976), 347–359 | DOI | MR | Zbl
[343] Walker E. A., “Ulm's theorem for totally projective groups”, Proc. Am. Math. Soc., 37 (1973), 387–392 | MR | Zbl
[344] Walker E. A., “The groups $P_{\beta}$”, Symposia Mathematica XIII. Gruppi Abeliani, Academic Press, London, 1974, 245–255 | MR
[345] Wallace K. D., “On mixed groups of torsion free rank one with totally projective primary components”, J. Algebra., 17 (1971), 482–488 | DOI | MR | Zbl
[346] Warfied R. B., Jr., “Homomorphisms and duality for torsion-free groups”, Math. Z., 107 (1968), 189–200 | DOI | MR
[347] Warfield R. B., Jr., “A Krull–Schmidt theorem for infinite sums of modules”, Proc. Am. Math. Soc., 22:2 (1969), 460–465 | DOI | MR | Zbl
[348] Warfield R. B., Jr., “Decompositions of injective modules”, Pac. J. Math., 31 (1969), 263–276 | DOI | MR | Zbl
[349] Warfield R. B., Jr., “An isomorphic refinement theorem for Abelian groups”, Pac. J. Math., 34:1 (1970), 237–255 | DOI | MR | Zbl
[350] Warfield R. B., Jr., “Exchange rings and decomposition of modules”, Math. Ann., 199 (1972), 31–36 | DOI | MR | Zbl
[351] Warfield R. B., Jr., “Classification theorems for $p$-groups and modules over a discrete valuation ring”, Bull. Am. Math. Soc., 78:1 (1972), 88–92 | DOI | MR | Zbl
[352] Warfield R. B., Jr., “Simply presented groups”, Proc. Special Semester on Abelian Groups, Univ. of Arizona, Tucson, 1972
[353] Warfield R. B., Jr., “A classification theorem for Abelian $p$-groups”, Trans. Am. Math. Soc., 210 (1975), 149–168 | MR | Zbl
[354] Warfield R. B., Jr., “Classification theory of Abelian groups," I: Balanced projectives”, Trans. Am. Math. Soc., 222 (1976), 33–63 | MR | Zbl
[355] Warfied R. B., Jr., “The structure of mixed Abelian groups”, Lect. Notes Math., 616 (1977), 1–38 | DOI | MR
[356] Warfield R. B., Jr., “Cancellation of modules an groups and stable range of endomorphism rings”, Pac. J. Math., 91:2 (1980), 457–485 | DOI | MR | Zbl
[357] Warfield R. B., Jr., “Classification theory of Abelian groups, II: Local theory”, Lect. Notes Math., 874 (1981), 322–349 | DOI | MR | Zbl
[358] Wick B. D., “A projective characterization for $SKT$-modules”, Proc. Am. Math. Soc., 80 (1980), 39–43 | DOI | MR | Zbl
[359] Wick B. D., “A classification theorem for $SKT$-modules”, Proc Am. Math. Soc., 80 (1980), 44–46 | DOI | MR | Zbl
[360] Wilson G. V., “Modules with the summand intersection property”, Commun. Algebra., 14:1 (1986), 21–38 | DOI | MR | Zbl
[361] Wilson G. V., “Additive groups of $T$-rings”, Proc. Am. Math. Soc., 99:2 (1987), 219–220 | MR | Zbl
[362] Wisbauer R., Foundations of Module and Ring Theory, Gordon Breach, Philadelphia, 1991 | MR | Zbl
[363] Wolfson K. G., “An ideal-theoretic characterization of the ring of all linear transformation”, Am. J. Math., 75 (1953), 358–386 | DOI | MR | Zbl
[364] Wolfson K. G., “Isomorphisms of the endomorphism rings of torsion-free modules”, Proc. Am. Math. Soc., 13:5 (1962), 712–714 | DOI | MR
[365] Wolfson K. G., “Isomorphisms of the endomorphism ring of a free module over a principal left ideal domain”, Michigan Math. J., 9 (1962), 69–75 | DOI | MR | Zbl
[366] Wolfson K. G., “Isomorphisms of the endomorphism rings of a class of torsion-free modules”, Proc. Am. Math. Soc., 14:4 (1963), 589–594 | DOI | MR | Zbl
[367] Wolfson K. G., “Anti-isomorphisms of endomorphism rings of locally free modules”, Math. Z., 202 (1989), 151–159 | DOI | MR | Zbl
[368] Zanardo P., “Kurosch invariants for torsion-free modules over Nagata valuation domains”, J. Pure Appl. Algebra., 82 (1992), 195–209 | DOI | MR | Zbl
[369] Zariski O., Samuel P., Commutative Algebra, Van Nostrand, Princeton, 1958, 1960 | MR | Zbl
[370] Z̆emlic̆ka J., “Steadiness is tested by a single module”, Abelian groups, rings and modules, Perth, 2000, 301–308
[371] Zippin L., “Countable torsion groups”, Ann. Math., 36 (1935), 86–99 | DOI | MR