Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_164_a0, author = {A. A. Tuganbaev}, title = {Arithmetical rings}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--73}, publisher = {mathdoc}, volume = {164}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_164_a0/} }
A. A. Tuganbaev. Arithmetical rings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 164 (2019), pp. 3-73. http://geodesic.mathdoc.fr/item/INTO_2019_164_a0/
[1] Vechtomov E. M., “Distributivnye koltsa nepreryvnykh funktsii i $F$-prostranstva”, Mat. zametki., 34:3 (1983), 321–332 | MR | Zbl
[2] Golod E. S., “Arifmeticheskie koltsa, biendomorfizmy i bazisy Grebnera”, Usp. mat. nauk., 60:1 (2005), 167–168 | DOI | MR | Zbl
[3] Golod E. S., “Distributivnost, binarnye sootnosheniya i standartnye bazisy”, Fundam. prikl. mat., 16:3 (2010), 127–134
[4] Golod E. S., “Zamechanie o kommutativnykh arifmeticheskikh koltsakh”, Fundam. prikl. mat., 19:2 (2014), 21–23
[5] Golod E. S., Tuganbaev A. A., “Annulyatory i konechno porozhdennye moduli”, Fundam. prikl. mat., 21:1 (2016), 79–82 | MR
[6] Kirichenko V. V., Yaremenko Yu. V., “O polusovershennykh poludistributivnykh koltsakh”, Mat. zametki., 69:1 (2001), 153–156 | DOI | MR | Zbl
[7] Tuganbaev A. A., “Kharakterizatsii kolets, ispolzuyuschie maloin'ektivnye i maloproektivnye moduli”, Vestn. MGU. Ser. mat. mekh., 1979, no. 3, 48–51 | Zbl
[8] Tuganbaev A. A., “Distributivnye moduli”, Usp. mat. nauk., 35:5 (215) (1980), 245–246 | MR | Zbl
[9] Tuganbaev A. A., “Koltsa s ploskimi pravymi idealami i distributivnye koltsa”, Mat. zametki., 38:2 (1985), 218–228 | MR | Zbl
[10] Tuganbaev A. A., “Ploskie moduli i koltsa, konechno porozhdennye kak moduli nad svoim tsentrom”, Mat. zametki., 60:2 (1996), 254–277 | DOI | MR | Zbl
[11] Tuganbaev A. A., “Distributivnye nelokalizuemye koltsa”, Usp. mat. nauk., 57:3 (2002), 165–166 | DOI | MR | Zbl
[12] Tuganbaev A. A., “Stroenie distributivnykh kolets”, Mat. sb., 193:5 (2002), 113–128 | DOI | MR | Zbl
[13] Tuganbaev A. A., “Distributivnye i multiplikatsionnye moduli i koltsa”, Mat. zametki., 75:3 (2004), 425–434 | DOI | MR | Zbl
[14] Tuganbaev A. A., “Arifmeticheskie koltsa i kvaziproektivnye idealy”, Fundam. prikl. mat., 19:2 (2014), 207–211
[15] Tuganbaev A. A., “Koltsa, u kotorykh vse konechnoporozhdennye pravye idealy kvaziproektivny”, Diskr. mat., 27:1 (2015), 146–154 | DOI | Zbl
[16] Tuganbaev A. A., “Koltsa Bezu bez netsentralnykh idempotentov”, Diskr. mat., 28:2 (2016), 133–145 | DOI | MR | Zbl
[17] Tuganbaev A. A., “Koltsa Bezu, annulyatory i diagonaliziruemost”, Fundam. prikl. mat., 21:2 (2016), 253–256 | MR
[18] Tuganbaev A. A., “Arifmeticheskie koltsa i razmernost Krullya”, Diskr. mat., 29:3 (2017), 126–132 | DOI
[19] Abuhlail J., Jarrar M., Kabbaj S., “Commutative rings in which every finitely generated ideal is quasi-projective”, J. Pure Appl. Algebra., 215 (2011), 2504–2511 | DOI | MR | Zbl
[20] Achkar H., “Sur les anneaux arithmétiques à gauche”, C. R. Acad. Sci., 278:5 (1974), A307–A309 | MR
[21] Achkar H., “Sur les propriétés des anneaux arithmétiques à gauche”, C. R. Acad. Sci., 284:17 (1977), A993–A995 | MR
[22] Achkar H., “Anneaux arithmétiques à gauche”, C. R. Acad. Sci., 286:20 (1978), A871–A873 | MR
[23] Achkar H., “Anneaux arithmétiques à gauche: propriétés de transfert”, C. R. Acad. Sci., 288:11 (1979), A583–A586 | MR
[24] Albu T., Năstăsescu C., “Modules arithmétiques”, Acta. Math. Acad. Sci. Hung., 25:3–4 (1974), 299–311 | DOI | MR | Zbl
[25] Amitsur S. A., “Remarks on principal ideal rings”, Osaka Math. J., 15:1 (1963), 59–69 | MR | Zbl
[26] Anderson D. D., “Some remarks on the ring $R(X)$”, Comment. Math. Univ. St. Pauli., 26:2 (1977), 137–140 | MR
[27] Anderson D. D., Anderson D. F., Markanda R., “The rings $R(X)$ and $R\langle X\rangle $”, J. Algebra., 95:1 (1985), 96–115 | DOI | MR | Zbl
[28] Anderson D. D., Camillo V., “Armendariz rings and Gaussian rings”, Commun. Algebra., 26:7 (1998), 2265–2272 | DOI | MR | Zbl
[29] Anderson F., Fuller K. R., Rings and Categories of Modules, Springer-Verlag, Berlin, 1973 | MR
[30] Aubert K. E., Beck I., “Chinese rings”, J. Pure Appl. Algebra., 24 (1982), 221–226 | DOI | MR | Zbl
[31] Bandelt H. J., Petrich M., “Subdirect products of rings and distributive lattices”, Proc. Edinburgh Math. Soc., 25:2 (1982), 155–171 | DOI | MR | Zbl
[32] Bazzoni S., Glaz S., “Prüfer rings”, Multiplicative Ideal Theory in Commutative Algebra, eds. Brewer J. W., Glaz S., Heinzer W. J., Olberding B. M., Springer, Boston, 2006 | MR | Zbl
[33] Bazzoni S., Glaz S., “Gaussian properties of total rings of quotients”, J. Algebra., 310 (2007), 180–193 | DOI | MR | Zbl
[34] Behrens E. A., “Distributive Darstellbare Ringe, I”, Math. Z., 73:5 (1960), 409–432 | DOI | MR | Zbl
[35] Behrens E. A., “Distributive Darstellbare Ringe, II”, Math. Z., 76:4 (1961), 367–384 | DOI | MR | Zbl
[36] Behrens E. A., “Die Halbgruppe der Ideale in Algebren mit distributivem Idealverband”, Arch. Math., 13 (1962), 251–266 | DOI | MR | Zbl
[37] Behrens E. A., Ring Theory, Acad. Press, New York, 1972 | MR
[38] Behrens E. A., “Noncommutative arithmetic rings”, Rings, Modules and Radicals, London, Amsterdam, 1973, 67–71 | MR
[39] Belzner T., “Towards self-duality of semidistributive Artinian rings”, J. Algebra., 135:1 (1990), 74–95 | DOI | MR | Zbl
[40] Bessenrodt K., Brungs H. H., Törner G., “Right chain rings, Part 1”, Schriftenreihe des Fachbereich Mathematik, Universität Duisburg, 1990
[41] Blair R. L., “Ideal lattice and the structure of rings”, Trans. Am. Math. Soc., 75:1 (1953), 136–153 | DOI | MR | Zbl
[42] Boynton J., “Pullbacks of Arithmetical Rings”, Commun. Algebra., 35:9 (2007), 2671–2684 | DOI | MR | Zbl
[43] Boynton J., “Prüfer conditions and the total quotient ring”, Commun. Algebra., 39:5 (2011), 1624–1630 | DOI | MR | Zbl
[44] Burgess W. D., Stephenson W., “An analogue of the Pierce sheaf for non-commutative rings”, Commun. Algebra., 6:9 (1978), 863–886 | DOI | MR | Zbl
[45] Burgess W. D., Stephenson W., “Rings all of whose Pierce stalks are local”, Can. Math. Bull., 22:2 (1979), 159–164 | DOI | MR | Zbl
[46] Caballero C. E., “Self-duality and $\ell $-hereditary semidistributive rings”, Commun. Algebra., 14:10 (1986), 1821–1843 | DOI | MR | Zbl
[47] Camillo V., “Distributive modules”, J. Algebra., 36:1 (1975), 16–25 | DOI | MR | Zbl
[48] Chatters A. W., “A decomposition theorem for Noetherian hereditary rings”, Bull. London Math. Soc., 4 (1972), 125–126 | DOI | MR | Zbl
[49] Arithmetical Properties of Commutative Rings and Monoids, ed. Chapman S. T., CRC Press, 2005 | MR | Zbl
[50] Chouinard L. G., Hardy B. R., Shores T. S., “Arithmetical semihereditary semigroup rings”, Commun. Algebra., 8:17, 1593–1652 | DOI | MR | Zbl
[51] Couchot F., “Localization of injective modules over arithmetical rings”, Commun. Algebra., 37:10 (2009), 3418–3423 | DOI | MR | Zbl
[52] Couchot F., “Finitistic weak dimension of commutative arithmetical rings”, Arab. J. Math., 1:1 (2012), 63–67 | DOI | MR | Zbl
[53] Couchot F., “Gaussian trivial ring extensions and FQP-rings”, Commun. Algebra., 43:7 (2015), 2863–2874 | DOI | MR | Zbl
[54] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Wiley, New York, 1994 | MR
[55] Eisenbud D., Griffith Ph., “Serial rings”, J. Algebra., 17 (1971), 389–400 | DOI | MR | Zbl
[56] Er N., “Rings whose modules are direct sums of extending modules”, Proc. Am. Math. Soc., 137:7 (2009), 2265–2271 | DOI | MR | Zbl
[57] Faith C., Algebra: Rings, Modules and Categories I, Springer-Verlag, Berlin–New York, 1973 | MR | Zbl
[58] Faith C., Algebra II, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl
[59] Fuchs L., “Über die Ideale arithmetischer Ringe”, Comment. Math. Helvet., 23:1 (1949), 334–341 | DOI | MR | Zbl
[60] Fuchs L., Heinzer W., Olberding B., “Commutative ideal theory without finiteness conditions: Primal ideals”, Trans. Am. Math. Soc., 357 (2005), 2771–2798 | DOI | MR | Zbl
[61] Fuchs L., Heinzer W., Olberding B., “Commutative ideal theory without finiteness conditions: Completely irreducible ideals”, Trans. Am. Math. Soc., 358:7 (2006), 3113–3131 | DOI | MR | Zbl
[62] Gillman L., Henriksen M., “Rings of continuous functions in which every finitely generated ideal is principal”, Trans. Am. Math. Soc., 82:2 (1956), 366–391 | DOI | MR | Zbl
[63] Gillman L., Henriksen M., “Some remarks about elementary divisor rings”, Trans. Am. Math. Soc., 82:2 (1956), 362–365 | DOI | MR | Zbl
[64] Glaz S., Schwarz R., “Prüfer conditions in commutative rings”, Arab. J. Sci. Engin., 36 (2011), 967–983 | DOI | MR
[65] Goodearl K. R., Ring Theory, Marcel Dekker, New York, 1976 | MR | Zbl
[66] Goodearl K. R., Von Neumann Regular Rings, Pitman, London, 1979 | MR | Zbl
[67] Goodearl K. R., Warfield R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[68] Gordon R., Robson J. C., “Krull dimension”, Mem. Am. Math. Soc., 1973, no. 133, 1–78 | MR
[69] Gräter G., General Lattice Theory. Second edition, Burkhäuser, Basel–Boston–Berlin, 2003 | MR
[70] Gräter J., “Über die Distributivität des Idealverbandes eines kommutativen Ringes”, Monatsh. Math., 99:4 (1985), 267–278 | DOI | MR | Zbl
[71] Handelman D., “Strongly semiprime rings”, Pac. J. Math., 60:1 (1975), 115–122 | DOI | MR | Zbl
[72] Handelman D., Lawrence J., “Strongly prime rings”, Trans. Am. Math. Soc., 211 (1975), 209–223 | DOI | MR | Zbl
[73] Hardy B. R., Shores T. S., “Arithmetical semigroup rings”, Can. J. Math., 32:6 (1980), 1361–1371 | DOI | MR | Zbl
[74] Hattori A., “A foundation of torsion theory for modules over general rings”, Nagoya Math. J., 17 (1960), 147–158 | DOI | MR | Zbl
[75] Heinzer W. J., Ratliff L. J., Rush D. E., “Strongly irreducible ideals of a commutative ring”, J. Pure Appl. Algebra., 166:3 (2002), 267–275 | DOI | MR | Zbl
[76] Henriksen M., “Some remarks about elementary divisor rings, II”, Michigan Math. J., 3 (1956), 159–163 | MR | Zbl
[77] Hinohara Y., “Note on noncommutative local rings”, Nagoya Math. J., 17 (1960), 161–166 | DOI | MR | Zbl
[78] Jensen C. U., “A remark on arithmetical rings”, Proc. Am. Math. Soc., 15:6 (1964), 951–954 | DOI | MR | Zbl
[79] Jensen C. U., “Arithmetical rings”, Acta Math. Acad. Sci. Hung., 17:1–2 (1966), 115–123 | DOI | MR | Zbl
[80] Jeremy L., “Modules et anneaux quasi-continus”, Can. Math. Bull., 17:2 (1974), 217–228 | DOI | MR | Zbl
[81] Johnson R. E., Wong F. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl
[82] Jondrup S., “p.p. rings and finitely generated flat ideals”, Trans. Am. Math. Soc., 28:2 (1971), 431–435 | MR
[83] Kaplansky I., “Elementary divisors and modules”, Trans. Am. Math. Soc., 19:2 (1949), 21–23 | MR
[84] Koike K., “Self-duality of quasi-Harada rings and locally distributive rings”, J. Algebra., 302:2 (2006), 613–645 | DOI | MR | Zbl
[85] Lam T. Y., Exercises in Classical Ring Theory, Springer-Verlag, New York, 1995 | MR
[86] Lam T. Y., Lectures on Modules and Rings, Springer-Verlag, New York, 1999 | MR | Zbl
[87] Larsen M. D., Lewis W. J., Shores T. S., “Elementary divisor rings and finitely presented modules”, Trans. Am. Math. Soc., 187:1 (1974), 231–248 | DOI | MR | Zbl
[88] Lawrence J., “A singular primitive ring”, Trans. Am. Math. Soc., 45:1 (1974), 59–62 | MR | Zbl
[89] Lee T. K., Zhou`Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 6:2 (2013), 1250159 | DOI | MR
[90] Lemonnier B., “Sur les anneaux qui ont une déviation”, C. R. Acad. Sci. Paris. Ser. A., 275 (1972), 357–359 | MR | Zbl
[91] Lemonnier B., “Dimension de Krull et codéviation des anneaux semi-héréditaires”, C. R. Acad. Sci. Paris. Ser. A., 284 (1977), 663–666 | MR | Zbl
[92] Levy L. S., “Sometimes only square matrices can be diagonalized”, Proc. Am. Math. Soc., 52 (1975), 18–22 | DOI | MR | Zbl
[93] Lu X., “Some properties of completely arithmetical rings”, Algebra Colloq., 23:1 (2016), 83–88 | DOI | MR | Zbl
[94] Lu X., Boynton J., “Completely arithmetical rings”, Commun. Algebra., 42:9 (2014), 4047–4054 | DOI | MR | Zbl
[95] Lucas T. G., “Strong Prüfer rings and the ring of finite fractions”, J. Pure Appl. Algebra., 84 (1993), 59–71 | DOI | MR | Zbl
[96] Lucas T. G., “The Gaussian property for rings and polynomials”, Houston J. Math., 34:1 (2008), 1–18 | MR | Zbl
[97] McGovern W., Sharma M., “Gaussian Property of the Rings $R(X)$ and $R\langle X\rangle$”, Commun. Algebra., 44:4 (2016), 1636–1646 | DOI | MR | Zbl
[98] Menzel W., “Ein Kriterium für Distributivität des Untergruppenverbands einer Abelschen Operatorgruppe”, Math. Z., 75:3 (1961), 271–276 | DOI | MR | Zbl
[99] Michler G., Wille R., “Die primitiven Klassen arithmetischer Ringe”, Math. Z., 113:5 (1970), 369–372 | DOI | MR | Zbl
[100] Min L. S., “On the constructions of local and arithmetical rings”, Acta. Math. Acad. Sci. Hung., 32:1–2 (1978), 31–34 | DOI | MR | Zbl
[101] Nicholson W. K., “Lifting idempotents and exchange rings”, Trans. Am. Math. Soc., 229:2 (1977), 269–278 | DOI | MR | Zbl
[102] Nikseresht A., Aziz A., “On arithmetical rings and the radical formula”, Vietnam J. Math., 38:1 (2010), 55–62 | MR | Zbl
[103] van Oystaeyen F., “Generalized Rees rings and arithmetical graded rings”, J. Algebra., 82:1 (1983), 185–193 | DOI | MR | Zbl
[104] Parkash A., “Arithmetical rings satisfy the radical formula”, J. Commun. Algebra., 4:2 (2012), 293–296 | DOI | MR | Zbl
[105] Puninski G. E., “Projective modules over the endomorphism ring of a biuniform module”, J. Pure Appl. Algebra., 188:1–3 (2004), 227–246 | DOI | MR | Zbl
[106] Rowen L. H., Ring Theory, Academic Press, Boston, 1988 | MR
[107] Shores T., Lewis W. J., “Serial modules and endomorphism rings”, Duke Math. J., 41:4 (1974), 889–909 | DOI | MR | Zbl
[108] Stenström B., Rings of Quotients, Springer-Verlag, Berlin–New York, 1975 | MR | Zbl
[109] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28:2 (1974), 291–310 | DOI | MR | Zbl
[110] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic Publ., Dordrecht, Boston, London, 1998 | MR | Zbl
[111] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic Publ., Dordrecht, Boston, London, 2002 | MR | Zbl
[112] Tuganbaev A. A., “Multiplication modules”, J. Math. Sci., 123:2 (2004), 3839–3905 | DOI | MR | Zbl
[113] Warfield R. B., “Decomposability of finitely presented modules”, Proc. Am. Math. Soc., 25 (1970), 167–172 | DOI | MR | Zbl
[114] Warfield R. B., “Stable generation of modules”, Lect. Notes Math., 700 (1979), 16–33 | DOI | MR | Zbl
[115] Wright M. H., “Right locally distributive rings”, Ring Theory, Proc. Bien. Ohio State (Denison Conf., Granville, Ohio, May, 1992), Singapore, 1993, 350–357 | MR | Zbl
[116] Xue W., “Rings with Morita duality”, Lect. Notes Math., 1523 (1992), 1–197 | DOI | MR
[117] Yaremenko Yu., “Noetherian semi-perfect rings of distributive module type”, Mat. Stud., 8:1 (1997), 3–10 | MR | Zbl
[118] Yukimoto Y., “Artinian rings whose projective indecomposables are distributive”, Osaka J. Math., 22 (1985), 339–344 | MR | Zbl
[119] Wisbauer R., Foundations of Module and Ring Theory, Gordon Breach, Philadelphia, 1991 | MR | Zbl