Arithmetical rings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 164 (2019), pp. 3-73

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, some familiar and new results on arithmetical rings, modules, and Besout rings (not necessarily commutative) are provided. In particular, we examine relationships between arithmetical rings and their localizations by maximal ideals, saturated submodules and saturations, localizable rings, properties of annihilators of finitely generated modules over arithmetical rings, diagonalizable rings, rings with flat right ideals, and rings with quasi-projective finitely generated right ideals, Hermite rings, Pierce stalks, and rings with Krull dimension.
Keywords: arithmetic ring, flat module, localization by maximal ideal, Bezout ring, Hermite ring, diagonalizable ring, Pierce stalk.
Mots-clés : distribution module
@article{INTO_2019_164_a0,
     author = {A. A. Tuganbaev},
     title = {Arithmetical rings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--73},
     publisher = {mathdoc},
     volume = {164},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_164_a0/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Arithmetical rings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 73
VL  - 164
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_164_a0/
LA  - ru
ID  - INTO_2019_164_a0
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Arithmetical rings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-73
%V 164
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_164_a0/
%G ru
%F INTO_2019_164_a0
A. A. Tuganbaev. Arithmetical rings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 164 (2019), pp. 3-73. http://geodesic.mathdoc.fr/item/INTO_2019_164_a0/