On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 81-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider symmetry and isomonodromy properties of universal special solutions of integrable nonlinear evolution equations, which are analogs of standard wave catastrophe functions known for linear problems. We perform a comparative analysis of two different approaches to the choice of symmetries of integrable nonlinear equations, which can be applied to the study of such special solutions. Some examples are also presented.
Keywords: wave catastrophe function, nonlinear integrable equation, symmetries, recursion operator, method of isomonodromy deformation.
@article{INTO_2019_163_a5,
     author = {B. I. Suleimanov},
     title = {On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--95},
     publisher = {mathdoc},
     volume = {163},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/}
}
TY  - JOUR
AU  - B. I. Suleimanov
TI  - On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 81
EP  - 95
VL  - 163
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/
LA  - ru
ID  - INTO_2019_163_a5
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%T On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 81-95
%V 163
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/
%G ru
%F INTO_2019_163_a5
B. I. Suleimanov. On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 81-95. http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/

[1] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972

[2] Baikov V. A., Gazizov P. K., Ibragimov N. Kh., “Metody vozmuschenii v gruppovom analize”, Itogi nauki i tekhn. Sovr. probl. mat. Noveishie dostizheniya., 34 (1980), 85–147

[3] Bartashevich D. A., “O kachestvennom povedenii veschestvennykh reshenii pervogo uravneniya Penleve”, Differ. uravn., 9:5 (1973), 942–944 | MR

[4] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[5] Garifullin P. H., “Sdvig fazy dlya sovmestnogo resheniya uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufim. mat. zh., 4:2 (2012), 80–86 | MR

[6] Garifullin P. H., “O sovmestnom reshenii uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufim. mat. zh., 8:4 (2016), 53–62 | MR

[7] Garifullin R. N., Suleimanov B. I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, ZhETF., 137:1 (2010), 149–165

[8] Giiemin V., Sternberg S., Geometricheskie asimptotiki, Nauka, M., 1980

[9] Gilmor R., Prikladnaya teoriya katastrof, Mir, M., 1984 | MR

[10] Gurevich A. V., Pitaevskii L. P., “Oprokidyvanie prostoi volny v kineteke razrezhennoi plazmy”, ZhETF., 60:6 (1971), 2155–2174

[11] Gurevich A. V., Pitaevskii L. P., “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF., 65:2 (1973), 590–604

[12] Zhiber A. V., “Polnoe opisanie algebry Li—Beklunda dlya uravnenii generatsii vtoroi garmoniki”, Dinamika sploshnoi sredy., 1980, no. 44, 3–14 | Zbl

[13] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF., 61:1 (1971), 118–134 | MR

[14] Zakharov S. V., “Zarozhdenie udarnoi volny v odnoi zadache Koshi dlya uravneniya Byurgersa”, Zh. vychisl. mat. mat. fiz., 44:3 (2004), 536–542 | MR | Zbl

[15] Zakharov S. V., Ilin A. M., “Ot slabogo razryva k gradientnoi katastrofe”, Mat. sb., 192:10 (2001), 3–18 | DOI | MR | Zbl

[16] Ibragimov N. Kh., Shabat A. V., “Uravneniya Kortevega—de Friza s gruppovoi tochki zreniya”, Dokl. AN SSSR., 244:1 (1979), 57–61 | MR | Zbl

[17] Ilin A. M., “Zadacha Koshi dlya odnogo kvazilineinogo uravneniya s malym parametrom”, Dokl. AN SSSR., 283:3 (1985), 530–534 | MR | Zbl

[18] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1987

[19] Itc A. R., “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 330–365

[20] Its A. P., Kapaev A. A., Novokshenov V. Yu., Fokas A. S., Transtsendenty Penleve: metod zadachi Rimana, RKhD, Moskva–Izhevsk, 2005

[21]

[22] Kravtsov Yu. A., “Ob odnoi modifikatsii metoda geometricheskoi optiki”, Izv. vuzov. Radiofizika., 7:4 (1964), 664–673

[23] Kravtsov Yu. A., Orlov Yu. I., “Kaustiki, katastrofy i volnovye polya”, Usp. mat. nauk., 141:4 (1983), 591–629 | DOI

[24] Kudashev B. P., Suleimanov B. I., “Osobennosti nekotorykh tipichnykh protsessov samoproizvolnogo padeniya intensivnosti v neustoichivykh sredakh”, Pisma v ZhETF., 62:4 (1995), 358–362

[25] Kudashev B. P., Suleimanov B., “Maloamplitudnye dispersionnye kolebaniya na fone priblizheniya nelineinoi geometricheskoi optiki”, Teor. mat. fiz., 118:3 (1995), 413–422 | DOI | MR

[26] Kudashev B. P., Suleimanov B. I., “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. mat. mekh., 65:3 (2001), 456–466 | MR | Zbl

[27] Lukin D. S., Palkin E. A., Chislennyi kanonicheskii metod v zadachakh teorii difraktsii i rasprostraneniya elektromagnitnykh voln v neodnorodnykh sredakh, Izd-vo MFTI, M., 1982

[28] Maslov V. P., Mosolov P. P., Uravneniya odnomernogo barotropnogo gaza, Nauka, M., 1990 | MR

[29] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[30] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989

[31] Orlov A. Yu, Shulman E. I., “O dopolnitelnykh simmetriyakh nelineinogo uravneniya Shredingera”, Teor. mat. fiz., 64:2 (1985), 323–328 | MR | Zbl

[32] Pavlenko V. A., Suleimanov B. I., “«Kvantovaniya» izomonodromnykh gamiltonovykh sistem $H^{7/2+1}$”, Ufim. mat. zh., 9:4 (2017), 100–110

[33] Riekstynsh E. Ya., Asimptoticheskie razlozheniya integralov, Zinatne, Riga, 1977

[34] Suleimanov B. I., “Vtoroe uravnenie Penleve v odnoi zadache o nelineinykh effektakh vblizi kaustik”, Zap. LOMI., 187 (1991), 110–128

[35] Suleimanov B. I., “O «nelineinom» obobschenii spetsialnykh funktsii volnovykh katastrof, opisyvaemykh dvukratnymi integralami”, Mat. zametki., 52:5 (1992), 102–106 | MR

[36] Suleimanov B. I., “O reshenii uravneniya Kortevega—de Vriza, voznikayuschego vblizi tochki oprokidyvaniya v zadachakh s maloi dispersiei”, Pisma v ZhETF., 58:5 (1993), 606–610

[37] Suleimanov B. I., “O vliyanii maloi nelineinosti na vysokochastotnye asimptotiki pri perestroikakh kaustik”, Teor. mat. fiz., 98:2 (1994), 198–206 | MR

[38] Suleimanov B. I., “Vozniknovenie bezdissipativnykh udarnykh voln i «neperturbativnaya» kvantovaya teoriya gravitatsii”, ZhETF., 105:5 (1994), 1089–1094

[39] Suleimanov B. I., “Vliyanie maloi dispersii na samofokusirovku v prostranstvenno odnomernom sluchae”, Pisma v ZhETF., 106:6 (2017), 375–380

[40] Suleimanov B. I., Khabibullin I. T., “Cimmetrii uravneniya Kadomtseva—Petviashvili, izomonodromnye deformatsii i «nelineinye» obobscheniya spetsialnykh funktsii volnovykh katastrof”, Teor. mat. fiz., 97:2 (1993), 213–226 | MR

[41] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR

[42] Bertola M., Tovbis A., “Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: Rational breathers and poles of the tritronquée solution to Painlevé I”, Commun. Pure Appl. Math., 66 (2013), 678–752 | DOI | MR | Zbl

[43] Clayes T., “Pole-free solutions of the first Painlevé hierarchy and non-generic critical behavior for the KdV equation”, Phys. D: Nonlin. Phenomena., 241:23–24 (2011), 2226–2236 | MR

[44] Clayes T., Vanlessen M., “The existence of a reale pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity., 20:5 (2007), 1163–1184 | DOI | MR

[45] Dubrovin B., “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour”, Commun. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl

[46] Dubrovin B., Elaeva M., “On the critical behavior in nonlinear evolutionary PDEs with small viscosity”, Russ. J. Math. Phys., 19:4, 449–460 | DOI | MR | Zbl

[47] Dubrovin B., Grava T., Klein C., “On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation”, J. Nonlin. Sci., 19:1 (2009), 57–94 | DOI | MR | Zbl

[48] Haberman R., “Note of the initial formation of shocks”, SIAM J. Appl. Math., 6:3 (1986), 16–19 | DOI | MR

[49] Haberman R., “The initial formation and stucture of two dimensional diffusive shock waves”, Wave Motion., 8 (1986), 267–276 | DOI | MR | Zbl

[50] Haberman R., Sun Ren-ji., “Nonlinear cusped caustics for dispersive waves”, Stud. Appl. Math., 72:1 (1985), 1–37 | DOI | MR | Zbl

[51] Haberman R., Sun Ren-ji., “Focusing at a penumbral caustic”, Proc. 5th Int. Conf. on Boundary and Interior Layers, Shanghai, 1988, 339–344 | MR | Zbl

[52] Hardy G. H., “On the asymptotic value of certain integrals”, Mess. Math., 46 (1917), 70–73

[53] Kitaev A. V., “Caustics in $1{+}1$ integrable systems”, J. Math. Phys., 35:6 (1994), 2934–2954 | DOI | MR | Zbl

[54] Kudashev V. R., KdV shock-like waves as invariant solutions of KdV equaton symmetry, arXiv: patt-sol/9404002v1

[55] Langer R. E., “On the asymptotic solutions of ordinary differential equations with an application to the Bessel functions of large order”, Trans. Am. Math. Soc., 38:1 (1931), 23–64 | DOI | MR

[56] Ligthill M. J., “Viscosity effects in sound waves of finite amplitude”, Surveys in Mechanics, eds. Batchelor G. K., Davies R. M., Cambridge Univ. Press, Cambridge, 1956, 250–351 | MR

[57] Ludwig D., “Uniform asymptotic expansions at a caustic”, Commun. Pure Appl. Math., 19:2 (1966), 215–250 | DOI | MR | Zbl

[58] Ludwig D., “Uniform asymptotic expansion of the field scattering by an convex object at high frecuenscies”, Commun. Pure Appl. Math., 20:1 (1966), 103–138 | DOI | MR

[59] Zaharov S. V., Il'in A. M., “On the influence of small dissipation on the evolution of weak discontinuities”, Funct. Differ. Equations., 8:3–4 (2001), 257–271 | MR