Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_163_a5, author = {B. I. Suleimanov}, title = {On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {81--95}, publisher = {mathdoc}, volume = {163}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/} }
TY - JOUR AU - B. I. Suleimanov TI - On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 81 EP - 95 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/ LA - ru ID - INTO_2019_163_a5 ER -
%0 Journal Article %A B. I. Suleimanov %T On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 81-95 %V 163 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/ %G ru %F INTO_2019_163_a5
B. I. Suleimanov. On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 81-95. http://geodesic.mathdoc.fr/item/INTO_2019_163_a5/
[1] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972
[2] Baikov V. A., Gazizov P. K., Ibragimov N. Kh., “Metody vozmuschenii v gruppovom analize”, Itogi nauki i tekhn. Sovr. probl. mat. Noveishie dostizheniya., 34 (1980), 85–147
[3] Bartashevich D. A., “O kachestvennom povedenii veschestvennykh reshenii pervogo uravneniya Penleve”, Differ. uravn., 9:5 (1973), 942–944 | MR
[4] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[5] Garifullin P. H., “Sdvig fazy dlya sovmestnogo resheniya uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufim. mat. zh., 4:2 (2012), 80–86 | MR
[6] Garifullin P. H., “O sovmestnom reshenii uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufim. mat. zh., 8:4 (2016), 53–62 | MR
[7] Garifullin R. N., Suleimanov B. I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, ZhETF., 137:1 (2010), 149–165
[8] Giiemin V., Sternberg S., Geometricheskie asimptotiki, Nauka, M., 1980
[9] Gilmor R., Prikladnaya teoriya katastrof, Mir, M., 1984 | MR
[10] Gurevich A. V., Pitaevskii L. P., “Oprokidyvanie prostoi volny v kineteke razrezhennoi plazmy”, ZhETF., 60:6 (1971), 2155–2174
[11] Gurevich A. V., Pitaevskii L. P., “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF., 65:2 (1973), 590–604
[12] Zhiber A. V., “Polnoe opisanie algebry Li—Beklunda dlya uravnenii generatsii vtoroi garmoniki”, Dinamika sploshnoi sredy., 1980, no. 44, 3–14 | Zbl
[13] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF., 61:1 (1971), 118–134 | MR
[14] Zakharov S. V., “Zarozhdenie udarnoi volny v odnoi zadache Koshi dlya uravneniya Byurgersa”, Zh. vychisl. mat. mat. fiz., 44:3 (2004), 536–542 | MR | Zbl
[15] Zakharov S. V., Ilin A. M., “Ot slabogo razryva k gradientnoi katastrofe”, Mat. sb., 192:10 (2001), 3–18 | DOI | MR | Zbl
[16] Ibragimov N. Kh., Shabat A. V., “Uravneniya Kortevega—de Friza s gruppovoi tochki zreniya”, Dokl. AN SSSR., 244:1 (1979), 57–61 | MR | Zbl
[17] Ilin A. M., “Zadacha Koshi dlya odnogo kvazilineinogo uravneniya s malym parametrom”, Dokl. AN SSSR., 283:3 (1985), 530–534 | MR | Zbl
[18] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1987
[19] Itc A. R., “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 330–365
[20] Its A. P., Kapaev A. A., Novokshenov V. Yu., Fokas A. S., Transtsendenty Penleve: metod zadachi Rimana, RKhD, Moskva–Izhevsk, 2005
[21]
[22] Kravtsov Yu. A., “Ob odnoi modifikatsii metoda geometricheskoi optiki”, Izv. vuzov. Radiofizika., 7:4 (1964), 664–673
[23] Kravtsov Yu. A., Orlov Yu. I., “Kaustiki, katastrofy i volnovye polya”, Usp. mat. nauk., 141:4 (1983), 591–629 | DOI
[24] Kudashev B. P., Suleimanov B. I., “Osobennosti nekotorykh tipichnykh protsessov samoproizvolnogo padeniya intensivnosti v neustoichivykh sredakh”, Pisma v ZhETF., 62:4 (1995), 358–362
[25] Kudashev B. P., Suleimanov B., “Maloamplitudnye dispersionnye kolebaniya na fone priblizheniya nelineinoi geometricheskoi optiki”, Teor. mat. fiz., 118:3 (1995), 413–422 | DOI | MR
[26] Kudashev B. P., Suleimanov B. I., “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. mat. mekh., 65:3 (2001), 456–466 | MR | Zbl
[27] Lukin D. S., Palkin E. A., Chislennyi kanonicheskii metod v zadachakh teorii difraktsii i rasprostraneniya elektromagnitnykh voln v neodnorodnykh sredakh, Izd-vo MFTI, M., 1982
[28] Maslov V. P., Mosolov P. P., Uravneniya odnomernogo barotropnogo gaza, Nauka, M., 1990 | MR
[29] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[30] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989
[31] Orlov A. Yu, Shulman E. I., “O dopolnitelnykh simmetriyakh nelineinogo uravneniya Shredingera”, Teor. mat. fiz., 64:2 (1985), 323–328 | MR | Zbl
[32] Pavlenko V. A., Suleimanov B. I., “«Kvantovaniya» izomonodromnykh gamiltonovykh sistem $H^{7/2+1}$”, Ufim. mat. zh., 9:4 (2017), 100–110
[33] Riekstynsh E. Ya., Asimptoticheskie razlozheniya integralov, Zinatne, Riga, 1977
[34] Suleimanov B. I., “Vtoroe uravnenie Penleve v odnoi zadache o nelineinykh effektakh vblizi kaustik”, Zap. LOMI., 187 (1991), 110–128
[35] Suleimanov B. I., “O «nelineinom» obobschenii spetsialnykh funktsii volnovykh katastrof, opisyvaemykh dvukratnymi integralami”, Mat. zametki., 52:5 (1992), 102–106 | MR
[36] Suleimanov B. I., “O reshenii uravneniya Kortevega—de Vriza, voznikayuschego vblizi tochki oprokidyvaniya v zadachakh s maloi dispersiei”, Pisma v ZhETF., 58:5 (1993), 606–610
[37] Suleimanov B. I., “O vliyanii maloi nelineinosti na vysokochastotnye asimptotiki pri perestroikakh kaustik”, Teor. mat. fiz., 98:2 (1994), 198–206 | MR
[38] Suleimanov B. I., “Vozniknovenie bezdissipativnykh udarnykh voln i «neperturbativnaya» kvantovaya teoriya gravitatsii”, ZhETF., 105:5 (1994), 1089–1094
[39] Suleimanov B. I., “Vliyanie maloi dispersii na samofokusirovku v prostranstvenno odnomernom sluchae”, Pisma v ZhETF., 106:6 (2017), 375–380
[40] Suleimanov B. I., Khabibullin I. T., “Cimmetrii uravneniya Kadomtseva—Petviashvili, izomonodromnye deformatsii i «nelineinye» obobscheniya spetsialnykh funktsii volnovykh katastrof”, Teor. mat. fiz., 97:2 (1993), 213–226 | MR
[41] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR
[42] Bertola M., Tovbis A., “Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: Rational breathers and poles of the tritronquée solution to Painlevé I”, Commun. Pure Appl. Math., 66 (2013), 678–752 | DOI | MR | Zbl
[43] Clayes T., “Pole-free solutions of the first Painlevé hierarchy and non-generic critical behavior for the KdV equation”, Phys. D: Nonlin. Phenomena., 241:23–24 (2011), 2226–2236 | MR
[44] Clayes T., Vanlessen M., “The existence of a reale pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity., 20:5 (2007), 1163–1184 | DOI | MR
[45] Dubrovin B., “On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: Universality of critical behaviour”, Commun. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl
[46] Dubrovin B., Elaeva M., “On the critical behavior in nonlinear evolutionary PDEs with small viscosity”, Russ. J. Math. Phys., 19:4, 449–460 | DOI | MR | Zbl
[47] Dubrovin B., Grava T., Klein C., “On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation”, J. Nonlin. Sci., 19:1 (2009), 57–94 | DOI | MR | Zbl
[48] Haberman R., “Note of the initial formation of shocks”, SIAM J. Appl. Math., 6:3 (1986), 16–19 | DOI | MR
[49] Haberman R., “The initial formation and stucture of two dimensional diffusive shock waves”, Wave Motion., 8 (1986), 267–276 | DOI | MR | Zbl
[50] Haberman R., Sun Ren-ji., “Nonlinear cusped caustics for dispersive waves”, Stud. Appl. Math., 72:1 (1985), 1–37 | DOI | MR | Zbl
[51] Haberman R., Sun Ren-ji., “Focusing at a penumbral caustic”, Proc. 5th Int. Conf. on Boundary and Interior Layers, Shanghai, 1988, 339–344 | MR | Zbl
[52] Hardy G. H., “On the asymptotic value of certain integrals”, Mess. Math., 46 (1917), 70–73
[53] Kitaev A. V., “Caustics in $1{+}1$ integrable systems”, J. Math. Phys., 35:6 (1994), 2934–2954 | DOI | MR | Zbl
[54] Kudashev V. R., KdV shock-like waves as invariant solutions of KdV equaton symmetry, arXiv: patt-sol/9404002v1
[55] Langer R. E., “On the asymptotic solutions of ordinary differential equations with an application to the Bessel functions of large order”, Trans. Am. Math. Soc., 38:1 (1931), 23–64 | DOI | MR
[56] Ligthill M. J., “Viscosity effects in sound waves of finite amplitude”, Surveys in Mechanics, eds. Batchelor G. K., Davies R. M., Cambridge Univ. Press, Cambridge, 1956, 250–351 | MR
[57] Ludwig D., “Uniform asymptotic expansions at a caustic”, Commun. Pure Appl. Math., 19:2 (1966), 215–250 | DOI | MR | Zbl
[58] Ludwig D., “Uniform asymptotic expansion of the field scattering by an convex object at high frecuenscies”, Commun. Pure Appl. Math., 20:1 (1966), 103–138 | DOI | MR
[59] Zaharov S. V., Il'in A. M., “On the influence of small dissipation on the evolution of weak discontinuities”, Funct. Differ. Equations., 8:3–4 (2001), 257–271 | MR