Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_163_a4, author = {V. Yu. Novokshenov}, title = {Parametric resonance in integrable systems and averaging on {Riemann} surfaces}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {65--80}, publisher = {mathdoc}, volume = {163}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a4/} }
TY - JOUR AU - V. Yu. Novokshenov TI - Parametric resonance in integrable systems and averaging on Riemann surfaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 65 EP - 80 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_163_a4/ LA - ru ID - INTO_2019_163_a4 ER -
%0 Journal Article %A V. Yu. Novokshenov %T Parametric resonance in integrable systems and averaging on Riemann surfaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 65-80 %V 163 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_163_a4/ %G ru %F INTO_2019_163_a4
V. Yu. Novokshenov. Parametric resonance in integrable systems and averaging on Riemann surfaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 65-80. http://geodesic.mathdoc.fr/item/INTO_2019_163_a4/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1967
[2] Bikbaev R. F., “Uravnenie Kortevega—de Friza s konechnozonnymi granichnymi usloviyami i uizemovskie deformatsii rimanovykh poverkhnostei”, Funkts. anal. prilozh., 23:4 (1989), 1–10 | MR | Zbl
[3] Bikbaev R. F., “Konechnozonnye attraktory i perekhodnye protsessy tipa udarnykh voln v integriruemykh sistemakh”, Zap. nauchn. sem. POMI, 199, 1992, 25–36 | Zbl
[4] Bikbaev R. F., Sharipov R. A., “Asimptotika pri $t \to \infty$ resheniya zadachi Koshi dlya uravneniya Kortevega—de Friza v klasse potentsialov s konechnozonnym povedeniem pri $x \to \pm\infty$”, Teor. mat. fiz., 78:3 (1989), 345–356 | MR | Zbl
[5] Bobenko A. I., Integrirovanie klassicheskikh volchkov metodom obratnoi zadachi, Preprint LOMI No 10-87, 1987
[6] Borisov A. V., Mamaev I. S., Sovremennaya teoriya integriruemykh sistem, RKhD, M., 2003
[7] Veksler V. I., “Novyi metod uskoreniya relyativistskikh chastits”, ZhETF., 9:3 (1945), 153–158
[8] Veselov A. P., “Konechnozonnye potentsialy i integriruemye sistemy na sfere s kvadratichnym potentsialom”, Funkts. anal. prilozh., 14:1 (1980), 48–50 | MR | Zbl
[9] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Usp. mat. nauk., 36:2 (1981), 11–92 | MR | Zbl
[10] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy. 1”, Dinamicheskie sistemy–4, Itogi nauki i tekhniki, VINITI, M., 1985, 179–285 | MR
[11] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega—de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Usp. mat. nauk., 31:1 (187) (1976), 55–136 | MR | Zbl
[12] Krichever I. M., “Metod usredneniya dlya dvumernykh integriruemykh uravnenii”, Funkts. anal. prilozh., 22:3 (1989), 200–213
[13] Kuzmak G. A., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Prikl. mat. mekh., 23 (1959), 515–526 | Zbl
[14] Mitropolskii Yu. A., Nestatsionarnye protsessy v nelineinykh kolebatelnykh sistemakh, Izd-vo AN USSR, Kiev, 1955 | MR
[15] Novokshenov V. Yu., “Uizemovskie deformatsii integriruemykh dinamicheskikh sistem tipa volchkov”, Funkts. anal. prilozh., 27:2 (1993), 50–62 | MR | Zbl
[16] Novokshenov V. Yu., “Vremennýe asimptotiki dlya solitonnykh uravnenii so stupenchatymi nachalnymi usloviyami”, Sovr. mat. prilozh., 5 (2003), 138–168 | Zbl
[17] Oden M., Vraschayuschiesya volchki: kurs integriruemykh sistem, RKhD, M., 1999
[18] Pikovskii A., Rozenblyum M., Kurts Yu., Sinkhronizatsiya: Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003
[19] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984 | MR
[20] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR
[21] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 1048–1068 | MR | Zbl
[22] Chirikov B. V., Nelineinyi rezonans, Izd-vo NGU, Novosibirsk, 1977
[23] Bobenko A. I., Reyman A. G, Semenov-Tian-Shansky M. A., “The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions”, Commun. Math. Phys., 122:2 (1989), 321–354 | DOI | MR
[24] Bohm D., Foldy L., “The Theory of the Synchrotron”, Phys. Rev. A., 70 (1946) | DOI
[25] Fay J. D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, 1973 | DOI | MR | Zbl
[26] Flaschka H., Forest M. G., McLaughlin D. W., “Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Commun. Pure Appl. Math., 33:6 (1980), 732–784 | DOI | MR
[27] Fajans J., Gilson E., Friedland L., “Autoresonant excitation of diocotron waves”, Phys. Rev. Lett., 82 (1999), 4444 | DOI
[28] Novokshenov V. Yu., “Whitham deformations of two-dimensional Liouville tori”, Singular Limits of Dispersive Waves, eds. Ercolani N., Levermore D., World Scientific, 1996, 105–116 | MR