Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_163_a2, author = {O. M. Kiselev}, title = {Uniform asymptotics of the sine amplitude function}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {25--38}, publisher = {mathdoc}, volume = {163}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/} }
TY - JOUR AU - O. M. Kiselev TI - Uniform asymptotics of the sine amplitude function JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 25 EP - 38 VL - 163 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/ LA - ru ID - INTO_2019_163_a2 ER -
O. M. Kiselev. Uniform asymptotics of the sine amplitude function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 25-38. http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/
[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979
[2] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970
[3] Zhuravskii A. M., Spravochnik po ellipticheskim funktsiyam, AN SSSR, M., 1941
[4] Kiselev O. M., “Ostsillyatsii okolo separatrisy uravneniya Dyuffinga”, Tr. IMM UrO RAN., 18, no. 2, 2012, 141–153
[5] Kuznetsov E. A., Mikhailov A. V., “Ustoichivost statsionarnykh voln v nelineinykh sredakh so slaboi dispersiei”, ZhETF., 67:5 (1974), 1717–1727
[6] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988
[7] Neishtadt A. I., “Prokhozhdenie cherez separatrisu v rezonansnoi zadache s medlenno izmenyayuschimsya parametrom”, Prikl. mat. mekh., 39:4 (1975), 621–632
[8] Timofeev A. V., “K voprosu o postoyanstve adiabaticheskogo invarianta pri izmenenii kharktera dvizheniya”, ZhETF., 75:4 (1978), 1303–1308
[9] Dunne G. V., Rao K., “Lame instantons”, J. High Energy Phys., 1:019 (2000), 1–9 | MR
[10] Glebov S. G., Kiselev O. M., Tarkhanov N., Nonlinear equations with small parameter, de Gryuter, Berlin, 2017 | MR
[11] Jacobi C. K. G. J., Fundamenta nova theoriae functionum ellipticarum, Regiomontanus, 1829
[12] Kaplun S., Fluid mechanics and singular perturbation, eds. Lagerstrom P. A., Howard L. N., Liu C. S., Academic Press, New York, 1967 | MR
[13] Kiselev O. M., Uniform asymptotic behaviour of Jacobi sn near a singular point. The lost formula from handbooks for elliptic functions, 2015, arXiv: 1510.06602
[14] Newcomb S., “An investigation of the orbit of Uranus with general tables of its moon”, Smithsonian Contributions to Knowledge., 19:262 (1873), 296
[15] Lindstedt A., “Beitrag zur Integration der Differentialgleichungen der Strungstheorie”, Mem. Acad. Imper. Sci. St. Petersbourg, 31:4 (1883), 20
[16] Maxima. A computer algebra system, http://maxima.sourceforge.net
[17] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl
[18] Wolfram research, http://functions.wolfram.com/EllipticFunctions/JacobiSN/06/03/