Uniform asymptotics of the sine amplitude function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 25-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of an elliptic function in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics.
Keywords: elliptic function, asymptotics, series.
@article{INTO_2019_163_a2,
     author = {O. M. Kiselev},
     title = {Uniform asymptotics of the sine amplitude function},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {163},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/}
}
TY  - JOUR
AU  - O. M. Kiselev
TI  - Uniform asymptotics of the sine amplitude function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 25
EP  - 38
VL  - 163
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/
LA  - ru
ID  - INTO_2019_163_a2
ER  - 
%0 Journal Article
%A O. M. Kiselev
%T Uniform asymptotics of the sine amplitude function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 25-38
%V 163
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/
%G ru
%F INTO_2019_163_a2
O. M. Kiselev. Uniform asymptotics of the sine amplitude function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 25-38. http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/

[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[2] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970

[3] Zhuravskii A. M., Spravochnik po ellipticheskim funktsiyam, AN SSSR, M., 1941

[4] Kiselev O. M., “Ostsillyatsii okolo separatrisy uravneniya Dyuffinga”, Tr. IMM UrO RAN., 18, no. 2, 2012, 141–153

[5] Kuznetsov E. A., Mikhailov A. V., “Ustoichivost statsionarnykh voln v nelineinykh sredakh so slaboi dispersiei”, ZhETF., 67:5 (1974), 1717–1727

[6] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988

[7] Neishtadt A. I., “Prokhozhdenie cherez separatrisu v rezonansnoi zadache s medlenno izmenyayuschimsya parametrom”, Prikl. mat. mekh., 39:4 (1975), 621–632

[8] Timofeev A. V., “K voprosu o postoyanstve adiabaticheskogo invarianta pri izmenenii kharktera dvizheniya”, ZhETF., 75:4 (1978), 1303–1308

[9] Dunne G. V., Rao K., “Lame instantons”, J. High Energy Phys., 1:019 (2000), 1–9 | MR

[10] Glebov S. G., Kiselev O. M., Tarkhanov N., Nonlinear equations with small parameter, de Gryuter, Berlin, 2017 | MR

[11] Jacobi C. K. G. J., Fundamenta nova theoriae functionum ellipticarum, Regiomontanus, 1829

[12] Kaplun S., Fluid mechanics and singular perturbation, eds. Lagerstrom P. A., Howard L. N., Liu C. S., Academic Press, New York, 1967 | MR

[13] Kiselev O. M., Uniform asymptotic behaviour of Jacobi sn near a singular point. The lost formula from handbooks for elliptic functions, 2015, arXiv: 1510.06602

[14] Newcomb S., “An investigation of the orbit of Uranus with general tables of its moon”, Smithsonian Contributions to Knowledge., 19:262 (1873), 296

[15] Lindstedt A., “Beitrag zur Integration der Differentialgleichungen der Strungstheorie”, Mem. Acad. Imper. Sci. St. Petersbourg, 31:4 (1883), 20

[16] Maxima. A computer algebra system, http://maxima.sourceforge.net

[17] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl

[18] Wolfram research, http://functions.wolfram.com/EllipticFunctions/JacobiSN/06/03/