Uniform asymptotics of the sine amplitude function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 25-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Two cases of degeneration of elliptic functions are well known: degeneration into trigonometric functions and degeneration into hyperbolic functions. Approximations of an elliptic function in a neighborhood of a degeneration are usually examined by means of series in the modulus of the elliptic function. For applications of the theory of elliptic functions in the theory of dynamical systems, uniform approximations with respect to the modulus and the independent variable are important. This review contains methods for constructing uniform asymptotics.
Keywords: elliptic function, asymptotics, series.
@article{INTO_2019_163_a2,
     author = {O. M. Kiselev},
     title = {Uniform asymptotics of the sine amplitude function},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {163},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/}
}
TY  - JOUR
AU  - O. M. Kiselev
TI  - Uniform asymptotics of the sine amplitude function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 25
EP  - 38
VL  - 163
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/
LA  - ru
ID  - INTO_2019_163_a2
ER  - 
%0 Journal Article
%A O. M. Kiselev
%T Uniform asymptotics of the sine amplitude function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 25-38
%V 163
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/
%G ru
%F INTO_2019_163_a2
O. M. Kiselev. Uniform asymptotics of the sine amplitude function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations, Tome 163 (2019), pp. 25-38. http://geodesic.mathdoc.fr/item/INTO_2019_163_a2/