Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 93-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem on the existence of the upper (lower) envelope of a convex cone or, more generally, a convex set for functions on the projective limit of vector lattices with values in the completion of the Kantorovich space or on the extended real line. We propose vectorial, ordinal, and topological dual interpretations of the existence conditions for such envelopes and a method of constructing it. Applications to the problem on the existence of a nontrivial (pluri)subharmonic and/or (pluri)harmonic minorant for functions in domains of a finite-dimensional real or complex space are considered. We also propose general approaches to problems on the nontriviality of weight classes of holomorphic functions, to describing zero (sub)sets for such classes of holomorphic functions, and to the problem of representing a meromorphic function as a ratio of holomorphic function from a given weight class.
Keywords: vector lattice, Hahn–Banach theorem, projective limit, (pluri)subharmonic function, holomorphic function, zero (sub)set.
@article{INTO_2019_162_a9,
     author = {B. N. Khabibullin and A. P. Rozit and E. B. Khabibullina},
     title = {Order versions of the {Hahn--Banach} theorem and envelopes. {II.~Applications} to the function theory},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {93--135},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - A. P. Rozit
AU  - E. B. Khabibullina
TI  - Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 93
EP  - 135
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/
LA  - ru
ID  - INTO_2019_162_a9
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A A. P. Rozit
%A E. B. Khabibullina
%T Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 93-135
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/
%G ru
%F INTO_2019_162_a9
B. N. Khabibullin; A. P. Rozit; E. B. Khabibullina. Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 93-135. http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/

[1] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978 | MR

[2] Baiguskarov T. Yu., Khabibullin B. N., “Golomorfnye minoranty plyurisubgarmonicheskikh funktsii”, Funkts. anal. prilozh., 50:1 (2016), 76–79 | DOI | MR

[3] Baiguskarov T. Yu., Talipova G. R., Khabibullin B. N., “Podposledovatelnosti nulei dlya klassov tselykh funktsii eksponentsialnogo tipa, vydelyaemykh ogranicheniyami na ikh rost vdol veschestvennoi osi”, Algebra i analiz., 28:2 (2016), 1–33 | MR

[4] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR

[5] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR

[6] Kartak V. V., Khabibullin B. N., “Dvoistvennoe predstavlenie funktsionalov na proektivnykh predelakh vektornykh reshetok”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tr. Mat. tsentra im. N. I. Lobachevskogo, 38, Kazan. mat. ob-vo, Kazan, 2009, 146–148

[7] Kudasheva E. G., Khabibullin B. N., “Raspredelenie nulei golomorfnykh funktsii umerennogo rosta v edinichnom kruge i predstavlenie v nem meromorfnykh funktsii”, Mat. sb., 200:9 (2009), 95–126 | DOI | MR | Zbl

[8] Kusraev A. G., Kutateladze S. S., Subdifferentsialnoe ischislenie. Teoriya i prilozheniya, Nauka, M., 2007 | MR

[9] Kutateladze S. S., Rubinov A. M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976 | MR

[10] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[11] Lelon L., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989

[12] Matematicheskaya entsiklopediya, «Sovetskaya entsiklopediya», M., 1977–1985

[13] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973

[14] Revenko A. V., “O prodolzhenii lineinykh funktsionalov”, Ukr. mat. visn., 6:1 (2009), 113–125 | MR

[15] Ronkin L. I., Elementy teorii analiticheskikh funktsii mnogikh peremennykh, Naukova dumka, Kiev, 1977

[16] Ronkin L. I., “Tselye funktsii”, Kompleksnyi analiz. Mnogie peremennye–3, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravleniya, 9, VINITI, M., 1986, 5–36

[17] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika., I:1 (1957), 60–77

[18] Tikhomirov V. M., “Vypuklyi analiz”, Analiz–2, v. 2, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 5–101

[19] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii. I”, Sib. mat. zh., 33:1 (1992), 173–178 | MR

[20] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii. II. Algebry funktsii konechnogo $\lambda$-tipa”, Sib. mat. zh., 33:3 (1992), 186–191 | MR

[21] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. I. Tselye i meromorfnye funktsii”, Izv. RAN. Ser. mat., 57:1 (1993), 129–146 | MR | Zbl

[22] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. II. Tselye i meromorfnye funktsii konechnogo poryadka”, Izv. RAN. Ser. mat., 57:3 (1993), 70–91 | MR | Zbl

[23] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya. I. Kompleksnyi analiz, In-t mat. s VTs UNTs RAN, Ufa, 1996, 122–131

[24] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. I”, Izv. RAN, ser. mat., 65:4 (2001), 205–224 | DOI | MR | Zbl

[25] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN, ser. mat., 65:5 (2001), 167–190 | DOI | MR | Zbl

[26] Khabibullin B. N., “Teoremy edinstvennosti dlya golomorfnykh funktsii i vymetanie”, Kompleksnyi analiz. Teoriya operatorov. Matematicheskoe modelirovanie, IPMI VNTs RAN, Vladikavkaz, 2006, 118–132

[27] Khabibullin B. N., “Posledovatelnosti nulei golomofnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Mat. sb., 198:2 (2007), 121–160 | DOI | Zbl

[28] Khabibullin B. N., “Nuli golomorfnykh funktsii s ogranicheniyami na rost v oblasti”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu. Itogi nauki, 3, Vladikavkaz, 2009, 282–291

[29] Khabibullin B. N., “Primeneniya v kompleksnom analize dvoistvennogo predstavleniya funktsionalov na vektornykh reshetkakh”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyam i ikh prilozheniyam. Itogi nauki. Yug Rossii, 4, Vladikavkaz, 2010, 102–116

[30] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2012

[31] Khabibullin B. N., “Analogi teoremy Khana—Banakha dlya (polu)grupp: postroenie nizhnei ogibayuschei”, Mat. Mezhdunar. konferentsii «Algebra i matematicheskaya logika: teoriya i prilozheniya» (Kazan, 2–6 iyunya 2014 g.), Kazanskii (Privolzhskii) federalnyi universitet, Kazan, 2014, 75–76

[32] Khabibullin B. N., Baiguskarov T. Yu., “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Mat. zametki., 99:4 (2016), 588–602 | DOI | Zbl

[33] Khabibullin B. N,, Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funkts. anal. prilozh., 52:1 (2018), 26–42 | DOI | MR | Zbl

[34] Khabibullin B. N., Rozit A. P., Khabibullin F. B., “Poryadkovye versii teoremy Khana—Banakha i ogibayuschie. I. Odnorodnye funktsii”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyam i matematicheskomu modelirovaniyu. Itogi nauki. Yug Rossii, 1, Vladikavkaz, 226–243

[35] Khabibullin B. N., Khabibullin F. B., Cherednikova L. Yu., “Podposledovatelnosti nulei dlya klassov golomorfnykh funktsii, ikh ustoichivost i entropiya lineinoi svyaznosti. I, II”, Algebra i analiz., 20:1 (2008), 146–236

[36] Khabibullin F. B., Khabibullina E. B., “K teoreme Khana—Banakha”, VI Mezhdunar. shkola-konf. dlya studentov, aspirantov i molodykh uchenykh «Fundamentalnaya matematika i ee prilozheniya v estestvoznanii», v. 1, RITs BashGU, Ufa, 2013, 101–106

[37] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985

[38] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[39] Aliprantis C. D., Border K. C., Infinite-Dimensional Analysis, Springer-Verlag, Heidelberg, 2006 | MR | Zbl

[40] Anger B., Lembcke J., “Hahn–Banach-type theorems for hypolinear functionals”, Math. Ann., 209 (1974), 127–151 | DOI | MR | Zbl

[41] Borwein J. M., Vanderwerff J. D., Convex Functions: Constructions, Characterizations, and Counterexamples, Cambridge Univ. Press, N.Y., 2010 | MR | Zbl

[42] Buskes G., “Hahn–Banach theorem surveyed”, Diss. Math., 327 (1993), 1–49 | MR

[43] Dinha N., Ernst E., Lópezc M. A., Volled M., “An approximate Hahn–Banach theorem for positively homogeneous functions”, Optimization., 64:5 (2013), 1321–1328 | DOI | MR

[44] Edwards D. A., “Choquet boundary theory for certain spaces of lower semicontinuous functions”, Proc. Int. Symp. on Function Algebras, Scott, Foresman and Company, Chicago, 1966, 300–309 | MR

[45] Fuchssteiner B., Lusky W., Convex Cones, North-Holland, Amsterdam, 1981 | MR | Zbl

[46] Gamelin T. W., Uniform Algebras and Jensen Measures, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl

[47] Gogus N. G., Perkins T. L., Poletsky E. A., “Noncompact versions of Edwards' theorem”, Positivity., 17 (2013), 459–473 | DOI | MR | Zbl

[48] Hörmander L., “Sur la fonction d'appui des ensembles convexes dans une espace lokalement convexe”, Ark. Math., 3:2 (1955), 180–186 | DOI | MR

[49] Hörmander L., Notions of convexity, Birkhäuser, Boston, Massachusetts, 1994 | MR | Zbl

[50] Khabibullin B. N., “Variant of a problem on the representation of a meromorphic function as a quotient of entire functions”, Complex Var. Ellipt. Equ., 37:1 (1998), 371–384 | MR

[51] Khabibullin B. N., “Dual approach to certain questions for weighted spaces of holomorphic functions”, Entire Functions in Modern Analysis, Proc. Israel Math. Conf. (Tel-Aviv, December 14–19, 1997), v. 15, Bar-Ilan Univ., Tel-Aviv, 2001, 207–219 | MR | Zbl

[52] Khabibullin B. N., “The representation of a meromorphic function as the quotient of entire functions and Paley problem in $\mathbb{C}^n$: survey of some results”, Mat. fiz., anal., geom., 9:2 (2002), 146–167 | MR | Zbl

[53] Khabibullin B. N., “Generalizations of Nevanlinna's theorems”, Mat. Stud. Lviv., 34:2 (2010), 197–206 | MR | Zbl

[54] Klimek M., Pluripotential Theory, Clarendon Press, N.Y., 1991 | MR | Zbl

[55] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Montreal, 1996 | MR

[56] Lubyshev V. F., “On dual representation of a mapping on a projective limit of vector lattice”, Sb. tr. Mezhdunar. ufimsk. zimnei shkoly-konferentsii po matematike i fizike dlya studentov, aspirantov i molodykh uchenykh (Ufa, 30 noyabrya–-6 dekabrya 2005), v. 3, Ufa, 2005, 64–70

[57] Narici L., “On the Hahn–Banach theorem”, Proc. II Int. School “Advanced Courses of Mathematical Analysis II,” Spain, 20–24 September 2004, Granada, 2004, 87–122 | MR

[58] Narici L., Beckenstein L., “The Hahn–Banach theorem: the life and times”, Topology Appl., 2–3 (1997), 193–217 | DOI | MR

[59] Poletsky E. A., “Plurisubharmonic functions as solutions of variational problems”, Proc. Symp. Pure Math., 52:1 (1991), 163–171 | DOI | MR | Zbl

[60] Poletsky E. A., “Holomorphic currents”, Indiana Univ. Math. J., 42:1 (1993), 85–144 | DOI | MR | Zbl

[61] Poletsky E. A., Sigurdsson R., “Dirichlet problems for plurisubharmonic functions on compact sets”, Math. Z., 271:3–4 (2012), 877–892 | DOI | MR | Zbl

[62] Ronkin L. I., Functions of Completely Regular Growth, Kluver Acad. Publ., Dordrecht–Boston–London, 1992 | MR | Zbl

[63] Simons S., “Extended and sandwich versions of the Hahn–Banach theorem”, J. Math. Anal. Appl., 21 (1968), 112–122 | DOI | MR | Zbl

[64] Simons S., From Hahn–Banach to Monotonicity, Springer-Verlag, Berlin, 2008 | MR | Zbl

[65] Weston J. D., “A note on the extension of linear functionals”, Am. Math. Monthly., 67:5 (1960), 444–445 | DOI | MR | Zbl

[66] Zălinesku C., “On zero duality gap and the Farkas lemma for conic programming”, Math. Oper. Res., 33 (2008), 991–1001 | DOI | MR

[67] Zălinesku C., “Hahn–Banach extension theorems for multifunctions revisited”, Math. Meth. Oper. Res., 68 (2008), 493–508 | DOI | MR