Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_162_a9, author = {B. N. Khabibullin and A. P. Rozit and E. B. Khabibullina}, title = {Order versions of the {Hahn--Banach} theorem and envelopes. {II.~Applications} to the function theory}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {93--135}, publisher = {mathdoc}, volume = {162}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/} }
TY - JOUR AU - B. N. Khabibullin AU - A. P. Rozit AU - E. B. Khabibullina TI - Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 93 EP - 135 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/ LA - ru ID - INTO_2019_162_a9 ER -
%0 Journal Article %A B. N. Khabibullin %A A. P. Rozit %A E. B. Khabibullina %T Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 93-135 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/ %G ru %F INTO_2019_162_a9
B. N. Khabibullin; A. P. Rozit; E. B. Khabibullina. Order versions of the Hahn--Banach theorem and envelopes. II.~Applications to the function theory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 93-135. http://geodesic.mathdoc.fr/item/INTO_2019_162_a9/
[1] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978 | MR
[2] Baiguskarov T. Yu., Khabibullin B. N., “Golomorfnye minoranty plyurisubgarmonicheskikh funktsii”, Funkts. anal. prilozh., 50:1 (2016), 76–79 | DOI | MR
[3] Baiguskarov T. Yu., Talipova G. R., Khabibullin B. N., “Podposledovatelnosti nulei dlya klassov tselykh funktsii eksponentsialnogo tipa, vydelyaemykh ogranicheniyami na ikh rost vdol veschestvennoi osi”, Algebra i analiz., 28:2 (2016), 1–33 | MR
[4] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR
[5] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR
[6] Kartak V. V., Khabibullin B. N., “Dvoistvennoe predstavlenie funktsionalov na proektivnykh predelakh vektornykh reshetok”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tr. Mat. tsentra im. N. I. Lobachevskogo, 38, Kazan. mat. ob-vo, Kazan, 2009, 146–148
[7] Kudasheva E. G., Khabibullin B. N., “Raspredelenie nulei golomorfnykh funktsii umerennogo rosta v edinichnom kruge i predstavlenie v nem meromorfnykh funktsii”, Mat. sb., 200:9 (2009), 95–126 | DOI | MR | Zbl
[8] Kusraev A. G., Kutateladze S. S., Subdifferentsialnoe ischislenie. Teoriya i prilozheniya, Nauka, M., 2007 | MR
[9] Kutateladze S. S., Rubinov A. M., Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976 | MR
[10] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[11] Lelon L., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989
[12] Matematicheskaya entsiklopediya, «Sovetskaya entsiklopediya», M., 1977–1985
[13] Meier P.-A., Veroyatnost i potentsialy, Mir, M., 1973
[14] Revenko A. V., “O prodolzhenii lineinykh funktsionalov”, Ukr. mat. visn., 6:1 (2009), 113–125 | MR
[15] Ronkin L. I., Elementy teorii analiticheskikh funktsii mnogikh peremennykh, Naukova dumka, Kiev, 1977
[16] Ronkin L. I., “Tselye funktsii”, Kompleksnyi analiz. Mnogie peremennye–3, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravleniya, 9, VINITI, M., 1986, 5–36
[17] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika., I:1 (1957), 60–77
[18] Tikhomirov V. M., “Vypuklyi analiz”, Analiz–2, v. 2, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 5–101
[19] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii. I”, Sib. mat. zh., 33:1 (1992), 173–178 | MR
[20] Khabibullin B. N., “Naimenshaya plyurisupergarmonicheskaya mazhoranta i multiplikatory tselykh funktsii. II. Algebry funktsii konechnogo $\lambda$-tipa”, Sib. mat. zh., 33:3 (1992), 186–191 | MR
[21] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. I. Tselye i meromorfnye funktsii”, Izv. RAN. Ser. mat., 57:1 (1993), 129–146 | MR | Zbl
[22] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. II. Tselye i meromorfnye funktsii konechnogo poryadka”, Izv. RAN. Ser. mat., 57:3 (1993), 70–91 | MR | Zbl
[23] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya. I. Kompleksnyi analiz, In-t mat. s VTs UNTs RAN, Ufa, 1996, 122–131
[24] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. I”, Izv. RAN, ser. mat., 65:4 (2001), 205–224 | DOI | MR | Zbl
[25] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN, ser. mat., 65:5 (2001), 167–190 | DOI | MR | Zbl
[26] Khabibullin B. N., “Teoremy edinstvennosti dlya golomorfnykh funktsii i vymetanie”, Kompleksnyi analiz. Teoriya operatorov. Matematicheskoe modelirovanie, IPMI VNTs RAN, Vladikavkaz, 2006, 118–132
[27] Khabibullin B. N., “Posledovatelnosti nulei golomofnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Mat. sb., 198:2 (2007), 121–160 | DOI | Zbl
[28] Khabibullin B. N., “Nuli golomorfnykh funktsii s ogranicheniyami na rost v oblasti”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu. Itogi nauki, 3, Vladikavkaz, 2009, 282–291
[29] Khabibullin B. N., “Primeneniya v kompleksnom analize dvoistvennogo predstavleniya funktsionalov na vektornykh reshetkakh”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyam i ikh prilozheniyam. Itogi nauki. Yug Rossii, 4, Vladikavkaz, 2010, 102–116
[30] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2012
[31] Khabibullin B. N., “Analogi teoremy Khana—Banakha dlya (polu)grupp: postroenie nizhnei ogibayuschei”, Mat. Mezhdunar. konferentsii «Algebra i matematicheskaya logika: teoriya i prilozheniya» (Kazan, 2–6 iyunya 2014 g.), Kazanskii (Privolzhskii) federalnyi universitet, Kazan, 2014, 75–76
[32] Khabibullin B. N., Baiguskarov T. Yu., “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Mat. zametki., 99:4 (2016), 588–602 | DOI | Zbl
[33] Khabibullin B. N,, Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funkts. anal. prilozh., 52:1 (2018), 26–42 | DOI | MR | Zbl
[34] Khabibullin B. N., Rozit A. P., Khabibullin F. B., “Poryadkovye versii teoremy Khana—Banakha i ogibayuschie. I. Odnorodnye funktsii”, Matematicheskii forum. Issledovaniya po matematicheskomu analizu, differentsialnym uravneniyam i matematicheskomu modelirovaniyu. Itogi nauki. Yug Rossii, 1, Vladikavkaz, 226–243
[35] Khabibullin B. N., Khabibullin F. B., Cherednikova L. Yu., “Podposledovatelnosti nulei dlya klassov golomorfnykh funktsii, ikh ustoichivost i entropiya lineinoi svyaznosti. I, II”, Algebra i analiz., 20:1 (2008), 146–236
[36] Khabibullin F. B., Khabibullina E. B., “K teoreme Khana—Banakha”, VI Mezhdunar. shkola-konf. dlya studentov, aspirantov i molodykh uchenykh «Fundamentalnaya matematika i ee prilozheniya v estestvoznanii», v. 1, RITs BashGU, Ufa, 2013, 101–106
[37] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985
[38] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971
[39] Aliprantis C. D., Border K. C., Infinite-Dimensional Analysis, Springer-Verlag, Heidelberg, 2006 | MR | Zbl
[40] Anger B., Lembcke J., “Hahn–Banach-type theorems for hypolinear functionals”, Math. Ann., 209 (1974), 127–151 | DOI | MR | Zbl
[41] Borwein J. M., Vanderwerff J. D., Convex Functions: Constructions, Characterizations, and Counterexamples, Cambridge Univ. Press, N.Y., 2010 | MR | Zbl
[42] Buskes G., “Hahn–Banach theorem surveyed”, Diss. Math., 327 (1993), 1–49 | MR
[43] Dinha N., Ernst E., Lópezc M. A., Volled M., “An approximate Hahn–Banach theorem for positively homogeneous functions”, Optimization., 64:5 (2013), 1321–1328 | DOI | MR
[44] Edwards D. A., “Choquet boundary theory for certain spaces of lower semicontinuous functions”, Proc. Int. Symp. on Function Algebras, Scott, Foresman and Company, Chicago, 1966, 300–309 | MR
[45] Fuchssteiner B., Lusky W., Convex Cones, North-Holland, Amsterdam, 1981 | MR | Zbl
[46] Gamelin T. W., Uniform Algebras and Jensen Measures, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl
[47] Gogus N. G., Perkins T. L., Poletsky E. A., “Noncompact versions of Edwards' theorem”, Positivity., 17 (2013), 459–473 | DOI | MR | Zbl
[48] Hörmander L., “Sur la fonction d'appui des ensembles convexes dans une espace lokalement convexe”, Ark. Math., 3:2 (1955), 180–186 | DOI | MR
[49] Hörmander L., Notions of convexity, Birkhäuser, Boston, Massachusetts, 1994 | MR | Zbl
[50] Khabibullin B. N., “Variant of a problem on the representation of a meromorphic function as a quotient of entire functions”, Complex Var. Ellipt. Equ., 37:1 (1998), 371–384 | MR
[51] Khabibullin B. N., “Dual approach to certain questions for weighted spaces of holomorphic functions”, Entire Functions in Modern Analysis, Proc. Israel Math. Conf. (Tel-Aviv, December 14–19, 1997), v. 15, Bar-Ilan Univ., Tel-Aviv, 2001, 207–219 | MR | Zbl
[52] Khabibullin B. N., “The representation of a meromorphic function as the quotient of entire functions and Paley problem in $\mathbb{C}^n$: survey of some results”, Mat. fiz., anal., geom., 9:2 (2002), 146–167 | MR | Zbl
[53] Khabibullin B. N., “Generalizations of Nevanlinna's theorems”, Mat. Stud. Lviv., 34:2 (2010), 197–206 | MR | Zbl
[54] Klimek M., Pluripotential Theory, Clarendon Press, N.Y., 1991 | MR | Zbl
[55] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Montreal, 1996 | MR
[56] Lubyshev V. F., “On dual representation of a mapping on a projective limit of vector lattice”, Sb. tr. Mezhdunar. ufimsk. zimnei shkoly-konferentsii po matematike i fizike dlya studentov, aspirantov i molodykh uchenykh (Ufa, 30 noyabrya–-6 dekabrya 2005), v. 3, Ufa, 2005, 64–70
[57] Narici L., “On the Hahn–Banach theorem”, Proc. II Int. School “Advanced Courses of Mathematical Analysis II,” Spain, 20–24 September 2004, Granada, 2004, 87–122 | MR
[58] Narici L., Beckenstein L., “The Hahn–Banach theorem: the life and times”, Topology Appl., 2–3 (1997), 193–217 | DOI | MR
[59] Poletsky E. A., “Plurisubharmonic functions as solutions of variational problems”, Proc. Symp. Pure Math., 52:1 (1991), 163–171 | DOI | MR | Zbl
[60] Poletsky E. A., “Holomorphic currents”, Indiana Univ. Math. J., 42:1 (1993), 85–144 | DOI | MR | Zbl
[61] Poletsky E. A., Sigurdsson R., “Dirichlet problems for plurisubharmonic functions on compact sets”, Math. Z., 271:3–4 (2012), 877–892 | DOI | MR | Zbl
[62] Ronkin L. I., Functions of Completely Regular Growth, Kluver Acad. Publ., Dordrecht–Boston–London, 1992 | MR | Zbl
[63] Simons S., “Extended and sandwich versions of the Hahn–Banach theorem”, J. Math. Anal. Appl., 21 (1968), 112–122 | DOI | MR | Zbl
[64] Simons S., From Hahn–Banach to Monotonicity, Springer-Verlag, Berlin, 2008 | MR | Zbl
[65] Weston J. D., “A note on the extension of linear functionals”, Am. Math. Monthly., 67:5 (1960), 444–445 | DOI | MR | Zbl
[66] Zălinesku C., “On zero duality gap and the Farkas lemma for conic programming”, Math. Oper. Res., 33 (2008), 991–1001 | DOI | MR
[67] Zălinesku C., “Hahn–Banach extension theorems for multifunctions revisited”, Math. Meth. Oper. Res., 68 (2008), 493–508 | DOI | MR