Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_162_a8, author = {S. Ya. Startsev}, title = {Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {85--92}, publisher = {mathdoc}, volume = {162}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/} }
TY - JOUR AU - S. Ya. Startsev TI - Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 85 EP - 92 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/ LA - ru ID - INTO_2019_162_a8 ER -
%0 Journal Article %A S. Ya. Startsev %T Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 85-92 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/ %G ru %F INTO_2019_162_a8
S. Ya. Startsev. Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 85-92. http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/
[1] Demskoi D. K., Startsev S. Ya., “O postroenii simmetrii po integralam giperbolicheskikh sistem uravnenii”, Fundam. prikl. mat., 10:1 (2004), 29–37 | Zbl
[2] Zhiber A. V., “Kvazilineinye giperbolicheskie uravneniya s beskonechnomernoi algebroi simmetrii”, Izv. RAN. Ser. mat., 58:4 (1994), 33–54 | Zbl
[3] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk., 56:1 (337) (2001), 63–106 | DOI | MR | Zbl
[4] Kuznetsova M. N., “O nelineinykh giperbolicheskikh uravneniyakh, svyazannykh differentsialnymi podstanovkami s uravneniem Kleina—Gordona”, Ufim. mat. zh., 4:3 (2012), 86–103 | MR | Zbl
[5] Mikhailov A. V., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, Usp. mat. nauk., 42:4 (256) (1987), 3–53 | MR
[6] Startsev S. Ya., “Ob invariantakh Laplasa giperbolicheskikh uravnenii, linearizuemykh differentsialnoi podstanovkoi”, Teor. mat. fiz., 120:2 (1999), 237–247 | DOI | MR | Zbl
[7] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl
[8] Kuznetsova M. N., Pekcan A., Zhiber A. V., “The Klein—Gordon equation and differential substitutions of the form $v=f(u,u_x,u_y)$”, SIGMA, 8 (2012), 090 | MR | Zbl