Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 85-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algorithm, which allows one to eliminate flows from conservation laws for hyperbolic equations by expressing partial derivatives of these flows in terms of the corresponding densities. In particular, the application of this algorithm allows one to prove that the decreasing of order of at least one of Laplace $y$-invariants of the equation $u_{xy}=F(x,y,u,u_x,u_y)$ is a necessary condition for the function $F_{u_y}$ belonged to the image of the total derivative $D_x$ by virtue of this equation. Thus, we obtain constructive necessary conditions for the existence of differential substitutions that transform a hyperbolic equation into a linear equation or into the Klein–Gordon equation.
Keywords: nonlinear hyperbolic equation, integrability, higher symmetry, conservation law, differential substitution.
Mots-clés : Laplace invariant
@article{INTO_2019_162_a8,
     author = {S. Ya. Startsev},
     title = {Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 85
EP  - 92
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/
LA  - ru
ID  - INTO_2019_162_a8
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 85-92
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/
%G ru
%F INTO_2019_162_a8
S. Ya. Startsev. Conservation laws for hyperbolic equations: search algorithm for local preimage with respect to the total derivative. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 85-92. http://geodesic.mathdoc.fr/item/INTO_2019_162_a8/

[1] Demskoi D. K., Startsev S. Ya., “O postroenii simmetrii po integralam giperbolicheskikh sistem uravnenii”, Fundam. prikl. mat., 10:1 (2004), 29–37 | Zbl

[2] Zhiber A. V., “Kvazilineinye giperbolicheskie uravneniya s beskonechnomernoi algebroi simmetrii”, Izv. RAN. Ser. mat., 58:4 (1994), 33–54 | Zbl

[3] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk., 56:1 (337) (2001), 63–106 | DOI | MR | Zbl

[4] Kuznetsova M. N., “O nelineinykh giperbolicheskikh uravneniyakh, svyazannykh differentsialnymi podstanovkami s uravneniem Kleina—Gordona”, Ufim. mat. zh., 4:3 (2012), 86–103 | MR | Zbl

[5] Mikhailov A. V., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, Usp. mat. nauk., 42:4 (256) (1987), 3–53 | MR

[6] Startsev S. Ya., “Ob invariantakh Laplasa giperbolicheskikh uravnenii, linearizuemykh differentsialnoi podstanovkoi”, Teor. mat. fiz., 120:2 (1999), 237–247 | DOI | MR | Zbl

[7] Anderson I. M., Kamran N., “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR | Zbl

[8] Kuznetsova M. N., Pekcan A., Zhiber A. V., “The Klein—Gordon equation and differential substitutions of the form $v=f(u,u_x,u_y)$”, SIGMA, 8 (2012), 090 | MR | Zbl