Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_162_a7, author = {M. N. Poptsova}, title = {Symmetries of a certain periodic chain}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {80--84}, publisher = {mathdoc}, volume = {162}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a7/} }
M. N. Poptsova. Symmetries of a certain periodic chain. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 80-84. http://geodesic.mathdoc.fr/item/INTO_2019_162_a7/
[1] Adler V. E., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k probleme integriruemosti”, Teor. mat. fiz., 125:3 (2000), 355–424 | DOI | MR | Zbl
[2] Zhiber A. V., Murtazina R. D., Khabibullin I. T., Shabat A. B., Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, In-t komp. tekhnologii, M.–Izhevsk, 2012
[3] Ferapontov E. V., “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, Teor. mat. fiz., 110:1 (1997), 86–97 | DOI | MR | Zbl
[4] Khabibullin I. T., Poptsova M. N., “Integriruemye dvumernye reshetki. Kharakteristicheskie koltsa Li i ikh klassifikatsiya”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obzory, 140, VINITI RAN, M., 2017, 18–29
[5] Khabibullin I. T., Poptsova M. N., “Algebraicheskie svoistva kvazilineinykh dvumerizovannykh tsepochek, svyazannye s integriruemostyu”, Ufim. mat. zh., 10:3 (2018), 89–109
[6] Habibullin I. T., Poptsova M.N., “Classification of a subclass of two-dimensional lattices via characteristic Lie rings”, SIGMA., 13 (2017), 073 | MR | Zbl
[7] Mikhailov A. V., Shabat A. B., Sokolov V. V., “The symmetry approach to classification of integrable equations”, What Is Integrability?, Springer Ser. Nonlin. Dynamics, ed. Zakharov V. E., Springer-Verlag, Berlin–Heidelberg, 1991, 115–184 | DOI | MR | Zbl
[8] Shabat A. B., Yamilov R. I., “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A., 227:1–2 (1997), 15–23 | DOI | MR | Zbl