Interpolation by series of exponential functions whose exponents are condensed in a certain direction
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 62-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

For complex interpolation nodes, we study the problem of interpolation by series of exponential functions whose exponents form a set, which is condensed at infinity in a certain direction. We obtain a criterion for all sets of nodes from a special class. For arbitrary sets of nodes, we obtain a necessary condition for the solvability of a more general problem of interpolation by functions that can be represented as Radon integrals of an exponential function over a set of exponents. The paper also contains well-known results on interpolation, which, in particular, allow studying the multipoint holomorphic Vallée Poussin problem for convolution operators.
Keywords: series of exponential functions, exponent of exponential function, limit direction of exponents, convolution operator, Cauchy problem, Radon integral.
Mots-clés : interpolation, Vallée Poussin problem
@article{INTO_2019_162_a6,
     author = {S. G. Merzlyakov and S. V. Popenov},
     title = {Interpolation by series of exponential functions whose exponents are condensed in a certain direction},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {62--79},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
AU  - S. V. Popenov
TI  - Interpolation by series of exponential functions whose exponents are condensed in a certain direction
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 62
EP  - 79
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/
LA  - ru
ID  - INTO_2019_162_a6
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%A S. V. Popenov
%T Interpolation by series of exponential functions whose exponents are condensed in a certain direction
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 62-79
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/
%G ru
%F INTO_2019_162_a6
S. G. Merzlyakov; S. V. Popenov. Interpolation by series of exponential functions whose exponents are condensed in a certain direction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 62-79. http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/

[1] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva golomorfnykh funktsii. Analiticheskoe prodolzhenie”, Izv. AN SSSR. Ser. mat., 37:4 (1973), 931–945

[2] Krivosheev A. S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. mat., 68:2 (2004), 71–136 | DOI | MR | Zbl

[3] Krivosheev A. S., “Kriterii analiticheskogo prodolzheniya funktsii iz glavnykh invariantnykh podprostranstv v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Algebra i analiz., 22:4 (2010), 137–197

[4] Krivosheev A. S., Krivosheeva O. A., “Zamknutost mnozhestva summ ryadov Dirikhle”, Ufim. mat. zh., 5:3 (2013), 96–120

[5] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufim. mat. zh., 3:2 (2011), 43–56 | MR

[6] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh mnogochlenov”, Ufim. mat. zh., 5:4 (2013), 84–90 | MR

[7] Krivosheeva O. A., Krivosheev A. S., “Kriterii vypolneniya fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. anal. prilozh., 46:4 (2012), 14–30 | DOI | MR | Zbl

[8] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[9] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980

[10] Merzlyakov S. G., “Invariantnye podprostranstva operatora kratnogo differentsirovaniya”, Mat. zametki., 33:5 (1983), 701–713 | MR | Zbl

[11] Merzlyakov S. G., “Integraly ot eksponenty po mere Radona”, Ufim. mat. zh., 3:2 (2011), 57–80 | Zbl

[12] Merzlyakov S. G., “Teorema Koshi—Adamara dlya ryadov eksponent”, Ufim. mat. zh., 6:1 (2014), 75–83

[13] Merzlyakov S. G., Popenov S. V., “Kratnaya interpolyatsiya ryadami eksponent v $H(C)$ s uzlami na veschestvennoi osi”, Ufim. mat. zh., 5:3 (2013), 130–143

[14] Merzlyakov S. G., Popenov S. V., “Interpolyatsiya ryadami eksponent v $H(D)$ s veschestvennymi uzlami”, Ufim. mat. zh., 7:1 (2015), 46–58 | MR

[15] Merzlyakov S. G., Popenov S. V., “Mnozhestvo pokazatelei dlya interpolyatsii summami ryadov eksponent vo vsekh vypuklykh oblastyakh”, Differentsialnye uravneniya. Matematicheskii analiz, Itogi nauki i tekhn. Ser. Sovr. mat. i ee prilozh. Temat. obzory, 143, VINITI RAN, M., 2017, 48–62

[16] Mullabaeva A. U., Napalkov V. V. (ml.)., “Reshenie zadachi Shapiro dlya operatora svertki”, Izv. Ufim. nauch. tsentra RAN., 4 (2017), 5–11

[17] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982

[18] Napalkov V. V., Zimens K. R., “Kratnaya zadacha Valle-Pussena na vypuklykh oblastyakh v yadre operatora svertki”, Dokl. RAN., 458:4 (2014), 387–389 | DOI | Zbl

[19] Napalkov V. V., Mullabaeva A. U., “Razlozhenie Fishera prostranstva tselykh funktsii dlya operatora svertki”, Dokl. RAN., 476:3 (2017), 465–467 | Zbl

[20] Napalkov V. V., Nuyatov A. A., “Mnogotochechnaya zadacha Valle-Pussena dlya operatorov svertki”, Mat. sb., 203:2 (2012), 77–86 | DOI | MR | Zbl

[21] Napalkov V. V., Nuyatov A. A., “Mnogotochechnaya zadacha Valle-Pussena dlya operatorov svertki s uzlami, zadannymi v ugle”, Teor. mat. fiz., 180:2 (2014), 264–271 | DOI | Zbl

[22] Napalkov V. V., Popenov S. V., “Golomorfnaya zadacha Koshi dlya operatora svertki v analiticheski ravnomernykh prostranstvakh i razlozheniya Fishera”, Dokl. RAN., 381:2 (2001), 164–166 | MR | Zbl

[23] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[24] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostrastv, vazhnykh v prilozheniyakh”, Matematika., 1:1 (1957), 60–77

[25] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968

[26] Shvarts L., Analiz, M., 1972

[27] Meril A., Yger A., “Problèmes de Cauchy globaux”, Bull. Soc. Math. France. V., 120 (1992), 87–111 | DOI | MR | Zbl