Interpolation by series of exponential functions whose exponents are condensed in a certain direction
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 62-79

Voir la notice de l'article provenant de la source Math-Net.Ru

For complex interpolation nodes, we study the problem of interpolation by series of exponential functions whose exponents form a set, which is condensed at infinity in a certain direction. We obtain a criterion for all sets of nodes from a special class. For arbitrary sets of nodes, we obtain a necessary condition for the solvability of a more general problem of interpolation by functions that can be represented as Radon integrals of an exponential function over a set of exponents. The paper also contains well-known results on interpolation, which, in particular, allow studying the multipoint holomorphic Vallée Poussin problem for convolution operators.
Keywords: series of exponential functions, exponent of exponential function, limit direction of exponents, convolution operator, Cauchy problem, Radon integral.
Mots-clés : interpolation, Vallée Poussin problem
@article{INTO_2019_162_a6,
     author = {S. G. Merzlyakov and S. V. Popenov},
     title = {Interpolation by series of exponential functions whose exponents are condensed in a certain direction},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {62--79},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
AU  - S. V. Popenov
TI  - Interpolation by series of exponential functions whose exponents are condensed in a certain direction
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 62
EP  - 79
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/
LA  - ru
ID  - INTO_2019_162_a6
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%A S. V. Popenov
%T Interpolation by series of exponential functions whose exponents are condensed in a certain direction
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 62-79
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/
%G ru
%F INTO_2019_162_a6
S. G. Merzlyakov; S. V. Popenov. Interpolation by series of exponential functions whose exponents are condensed in a certain direction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 62-79. http://geodesic.mathdoc.fr/item/INTO_2019_162_a6/