Invariant manifolds of hyperbolic integrable equations and their applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 136-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

We assign some kind of invariant manifolds to a given integrable PDE (its discrete or semi-discrete variant). First, we linearize the equation around its arbitrary solution $u$. Then we construct a differential (respectively, difference) equation compatible with the linearized equation for any choice of $u$. This equation defines a surface called a generalized invariant manifold. In a sense, the manifold generalizes the symmetry, which is also a solution to the linearized equation. In this paper, we concentrate on continuous and discrete models of hyperbolic type. It is known that such kind equations have two hierarchies of symmetries, corresponding to the characteristic directions. We have shown that properly chosen generalized invariant manifold allows one to construct recursion operators that generate these symmetries. It is surprising that both recursion operators are related to different parametrizations of the same invariant manifold. Therefore, knowing one of the recursion operators for the hyperbolic type integrable equation (having no pseudo-constants) we can immediately find the second one.
Keywords: integrability, invariant manifold, recursion operator, quad equation.
Mots-clés : Lax pair
@article{INTO_2019_162_a10,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {Invariant manifolds of hyperbolic integrable equations and their applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {136--150},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - Invariant manifolds of hyperbolic integrable equations and their applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 136
EP  - 150
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/
LA  - ru
ID  - INTO_2019_162_a10
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%T Invariant manifolds of hyperbolic integrable equations and their applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 136-150
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/
%G ru
%F INTO_2019_162_a10
I. T. Habibullin; A. R. Khakimova. Invariant manifolds of hyperbolic integrable equations and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 136-150. http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/

[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk., 56:1 (337) (2001), 63–106 | DOI | MR | Zbl

[2] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. anal. prilozh., 8:3 (1974), 43–53 | MR | Zbl

[3] Zakharov V. E., Shabat A. B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. anal. prilozh., 13:3 (1979), 13–22 | MR

[4] Ibragimov N. Kh., Shabat A. B., “Evolyutsionnye uravneniya s netrivialnoi gruppoi Li—Beklunda”, Funkts. anal. prilozh., 14:1 (1980), 25–36 | MR | Zbl

[5] Meshkov A. G., Sokolov V. V., “Giperbolicheskie uravneniya s simmetriyami tretego poryadka”, Teor. mat. fiz., 166:1 (2011), 51–67 | DOI | Zbl

[6] Svinolupov S. I., Sokolov V. V., “Ob evolyutsionnykh uravneniyakh s netrivialnymi zakonami sokhraneniya”, Funkts. anal. prilozh., 16:4 (1982), 86–87 | MR

[7] Khabibullin I. T., Khakimova A. R., “Invariantnye mnogoobraziya i pary Laksa dlya integriruemykh nelineinykh tsepochek”, Teor. mat. fiz., 191:3 (2017), 369–388 | DOI | MR

[8] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, Ufa, 1982, 95–114 | Zbl

[9] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[10] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Notices., 2002, no. 11, 573–611 | DOI | MR | Zbl

[11] Habibullin I. T., Khakimova A. R., “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A: Math. Theor., 50:30 (2017), 305206, 1–19 | DOI | MR

[12] Habibullin I. T., Khakimova A. R., Poptsova M. N., “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 035202, 1–35 | DOI | MR

[13] Hirota R., Tsujimoto S., “Conserved quantities of a class of nonlinear difference-difference equations”, J. Phys. Soc. Jpn., 64:9 (1995), 3125–3127 | DOI | MR | Zbl

[14] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–90 | DOI | MR

[15] Nijhoff F., Capel H., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR | Zbl

[16] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasgow Math. J., 43A (2001), 109–123 | DOI | MR | Zbl

[17] Svinin A. K., “On some integrable lattice related by the Miura-type transformation to the Itoh–Narita–Bogoyavlenskii lattice”, J. Phys. A: Math. Theor., 44:46 (2011), 465210 | DOI | MR | Zbl

[18] Tongas A., Tsoubelis D., Papageorgiou V., “Symmetries and group invariant reductions of integrable partial difference equations”, Proc. 10th Int. Conf. in Modern Group Analysis., 2005, 222–230

[19] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl

[20] Xenitidis P., “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proc. 4th Workshop “Group Analysis of Differential Equations and Integrable Systems”, 2009, 226–42 | MR