Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_162_a10, author = {I. T. Habibullin and A. R. Khakimova}, title = {Invariant manifolds of hyperbolic integrable equations and their applications}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {136--150}, publisher = {mathdoc}, volume = {162}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/} }
TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova TI - Invariant manifolds of hyperbolic integrable equations and their applications JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 136 EP - 150 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/ LA - ru ID - INTO_2019_162_a10 ER -
%0 Journal Article %A I. T. Habibullin %A A. R. Khakimova %T Invariant manifolds of hyperbolic integrable equations and their applications %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 136-150 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/ %G ru %F INTO_2019_162_a10
I. T. Habibullin; A. R. Khakimova. Invariant manifolds of hyperbolic integrable equations and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 136-150. http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/
[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Usp. mat. nauk., 56:1 (337) (2001), 63–106 | DOI | MR | Zbl
[2] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. anal. prilozh., 8:3 (1974), 43–53 | MR | Zbl
[3] Zakharov V. E., Shabat A. B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. anal. prilozh., 13:3 (1979), 13–22 | MR
[4] Ibragimov N. Kh., Shabat A. B., “Evolyutsionnye uravneniya s netrivialnoi gruppoi Li—Beklunda”, Funkts. anal. prilozh., 14:1 (1980), 25–36 | MR | Zbl
[5] Meshkov A. G., Sokolov V. V., “Giperbolicheskie uravneniya s simmetriyami tretego poryadka”, Teor. mat. fiz., 166:1 (2011), 51–67 | DOI | Zbl
[6] Svinolupov S. I., Sokolov V. V., “Ob evolyutsionnykh uravneniyakh s netrivialnymi zakonami sokhraneniya”, Funkts. anal. prilozh., 16:4 (1982), 86–87 | MR
[7] Khabibullin I. T., Khakimova A. R., “Invariantnye mnogoobraziya i pary Laksa dlya integriruemykh nelineinykh tsepochek”, Teor. mat. fiz., 191:3 (2017), 369–388 | DOI | MR
[8] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, Ufa, 1982, 95–114 | Zbl
[9] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR
[10] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Notices., 2002, no. 11, 573–611 | DOI | MR | Zbl
[11] Habibullin I. T., Khakimova A. R., “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, J. Phys. A: Math. Theor., 50:30 (2017), 305206, 1–19 | DOI | MR
[12] Habibullin I. T., Khakimova A. R., Poptsova M. N., “On a method for constructing the Lax pairs for nonlinear integrable equations”, J. Phys. A: Math. Theor., 49:3 (2016), 035202, 1–35 | DOI | MR
[13] Hirota R., Tsujimoto S., “Conserved quantities of a class of nonlinear difference-difference equations”, J. Phys. Soc. Jpn., 64:9 (1995), 3125–3127 | DOI | MR | Zbl
[14] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–90 | DOI | MR
[15] Nijhoff F., Capel H., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR | Zbl
[16] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasgow Math. J., 43A (2001), 109–123 | DOI | MR | Zbl
[17] Svinin A. K., “On some integrable lattice related by the Miura-type transformation to the Itoh–Narita–Bogoyavlenskii lattice”, J. Phys. A: Math. Theor., 44:46 (2011), 465210 | DOI | MR | Zbl
[18] Tongas A., Tsoubelis D., Papageorgiou V., “Symmetries and group invariant reductions of integrable partial difference equations”, Proc. 10th Int. Conf. in Modern Group Analysis., 2005, 222–230
[19] Wahlquist H. D., Estabrook F. B., “Prolongation structures of nonlinear evolution equations”, J. Math. Phys., 16:1 (1975), 1–7 | DOI | MR | Zbl
[20] Xenitidis P., “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proc. 4th Workshop “Group Analysis of Differential Equations and Integrable Systems”, 2009, 226–42 | MR