Invariant manifolds of hyperbolic integrable equations and their applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 136-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We assign some kind of invariant manifolds to a given integrable PDE (its discrete or semi-discrete variant). First, we linearize the equation around its arbitrary solution $u$. Then we construct a differential (respectively, difference) equation compatible with the linearized equation for any choice of $u$. This equation defines a surface called a generalized invariant manifold. In a sense, the manifold generalizes the symmetry, which is also a solution to the linearized equation. In this paper, we concentrate on continuous and discrete models of hyperbolic type. It is known that such kind equations have two hierarchies of symmetries, corresponding to the characteristic directions. We have shown that properly chosen generalized invariant manifold allows one to construct recursion operators that generate these symmetries. It is surprising that both recursion operators are related to different parametrizations of the same invariant manifold. Therefore, knowing one of the recursion operators for the hyperbolic type integrable equation (having no pseudo-constants) we can immediately find the second one.
Keywords: integrability, invariant manifold, recursion operator, quad equation.
Mots-clés : Lax pair
@article{INTO_2019_162_a10,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {Invariant manifolds of hyperbolic integrable equations and their applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {136--150},
     publisher = {mathdoc},
     volume = {162},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - Invariant manifolds of hyperbolic integrable equations and their applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 136
EP  - 150
VL  - 162
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/
LA  - ru
ID  - INTO_2019_162_a10
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%T Invariant manifolds of hyperbolic integrable equations and their applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 136-150
%V 162
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/
%G ru
%F INTO_2019_162_a10
I. T. Habibullin; A. R. Khakimova. Invariant manifolds of hyperbolic integrable equations and their applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 136-150. http://geodesic.mathdoc.fr/item/INTO_2019_162_a10/