Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_162_a0, author = {D. I. Borisov}, title = {On lacunas in the spectrum of the {Laplacian} with the {Dirichlet} boundary condition in a strip with oscillating boundary}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--14}, publisher = {mathdoc}, volume = {162}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_162_a0/} }
TY - JOUR AU - D. I. Borisov TI - On lacunas in the spectrum of the Laplacian with the Dirichlet boundary condition in a strip with oscillating boundary JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 14 VL - 162 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_162_a0/ LA - ru ID - INTO_2019_162_a0 ER -
%0 Journal Article %A D. I. Borisov %T On lacunas in the spectrum of the Laplacian with the Dirichlet boundary condition in a strip with oscillating boundary %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-14 %V 162 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_162_a0/ %G ru %F INTO_2019_162_a0
D. I. Borisov. On lacunas in the spectrum of the Laplacian with the Dirichlet boundary condition in a strip with oscillating boundary. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Mathematical Physics, Tome 162 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2019_162_a0/
[1] Borisov D. I., “O lakunakh v spektre laplasiana v polose, vozmuschennogo ogranichennym periodicheskim operatorom”, Ufim. mat. zh., 10:2 (2018), 13–29
[2] Borisov D. I., “Ob otsutstvii lakun v nizhnei chasti spektra laplasiana s chastym cheredovaniem kraevykh uslovii v polose”, Teor. mat. fiz., 195:2 (2018), 225–239 | DOI | MR | Zbl
[3] Borisov D. I., “O lakunakh v nizhnei chasti spektra periodicheskogo magnitnogo operatora v polose”, Sovr. mat. Fundam. napr., 63, no. 3, 2017, 373–391 | MR
[4] Skriganov M. M., Sobolev A. V., “Asimptoticheskie otsenki dlya spektralnykh zon periodicheskikh operatorov Shredingera”, Algebra i analiz., 17:1 (2005), 276–288
[5] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 171, 1985, 3–122
[6] Barbatis G., Parnovski L., “Bethe–Sommerfeld conjecture for pseudo-differential perturbation”, Commun. Partial Differ. Equations., 34:4 (2009), 383–418 | DOI | MR | Zbl
[7] Beeken C. B. E., Periodic Schrödinger operators in dimension two: constant magnetic fields and boundary-value problems, Ph.D. thesis., University of Sussex, Brighton, 2002
[8] Borisov D., Cardone G., Durante T., “Homogenization and uniform resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. Roy. Soc. Edinburgh. Sec. A. Math., 146:6 (2016), 1115–1158 | DOI | MR | Zbl
[9] Borisov D., Cardone G., Faella L., Perugia C., “Uniform resolvent convergence for a strip with fast oscillating boundary”, J. Differ. Equations., 255:12 (2013), 4378–4402 | DOI | MR | Zbl
[10] Borisov D., Bunoiu R., Cardone G., “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Zeit. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl
[11] Borisov D., Bunoiu R., Cardone G., “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Inst. H. Poincaré., 11:8 (2010), 1591–1627 | DOI | MR | Zbl
[12] Borisov D. and Cardone G., “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A. Math. Gen., 42:36 (2009), 365205 | DOI | MR | Zbl
[13] Borisov D., Bunoiu R., Cardone G., “On a waveguide with an infinite number of small windows”, Comp. Rend. Math., 349:1-2 (2011), 53–56 | DOI | MR | Zbl
[14] Dahlberg B. E. J., Trubowitz E., “A remark on two dimensional periodic potentials”, Comment. Math. Helvet., 57:1 (1982), 130–134 | DOI | MR | Zbl
[15] Helffer B., Mohamed A., “Asymptotics of the density of states for the Schrödinger operator with periodic electric potential”, Duke Math. J., 92:1 (1998), 1–60 | DOI | MR | Zbl
[16] Karpeshina Y., “Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case”, Commun. Math. Phys., 251:3 (2004), 473–514 | DOI | MR | Zbl
[17] Mohamed A., “Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential”, J. Math. Phys., 38:8 (1997), 4023–4051 | DOI | MR | Zbl
[18] Parnovski L., “Bethe–Sommerfeld conjecture”, Ann. Inst. H. Poincaré., 9:3 (2008), 457–508 | DOI | MR | Zbl
[19] Parnovski L., Sobolev A., “On the Bethe–Sommerfeld conjecture for the polyharmonic operator”, Duke Math. J., 107:2 (2001), 209–238 | DOI | MR | Zbl
[20] Parnovski L., Sobolev A.V., “Bethe–Sommerfeld conjecture for periodic operators with strong perturbations”, Invent. Math., 181:3 (2010), 467–540 | DOI | MR | Zbl
[21] Skriganov M. M., Sobolev A. V., “Variation of the number of lattice points in large balls”, Acta Arithm., 120:3 (2005), 245–267 | DOI | MR | Zbl