Asymptotic properties of entire functions with given laws of distribution of zeros
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Entire Functions and Their Applications, Tome 161 (2019), pp. 104-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

This review was compiled from the author's doctoral dissertation defended at the M. V. Lomonosov Moscow State University in February 2017. The author’s results obtained in the last decade are systematized and summarized. The research relates to the classical direction of the theory of entire functions of one variable devoted to the connection between the asymptotic behavior of an entire function and the distribution of its zeros on the complex plane. The results presented are applied to the theory of complete and representing systems of exponents in spaces of analytic functions.
Keywords: canonical product, entire function, type, indicator, upper and lower zero density, system of exponents, radius of completeness, representing system
Mots-clés : condensation index, decomposition into simple fractions.
@article{INTO_2019_161_a2,
     author = {V. B. Sherstyukov},
     title = {Asymptotic properties of entire functions with given laws of distribution of zeros},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--129},
     publisher = {mathdoc},
     volume = {161},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_161_a2/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - Asymptotic properties of entire functions with given laws of distribution of zeros
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 104
EP  - 129
VL  - 161
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_161_a2/
LA  - ru
ID  - INTO_2019_161_a2
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T Asymptotic properties of entire functions with given laws of distribution of zeros
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 104-129
%V 161
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_161_a2/
%G ru
%F INTO_2019_161_a2
V. B. Sherstyukov. Asymptotic properties of entire functions with given laws of distribution of zeros. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Complex Analysis. Entire Functions and Their Applications, Tome 161 (2019), pp. 104-129. http://geodesic.mathdoc.fr/item/INTO_2019_161_a2/

[1] Abanin A. V., “Kharakterizatsiya minimalnykh sistem pokazatelei predstavlyayuschikh sistem obobschennykh eksponent”, Izv. vuzov. Mat., 1991, no. 2, 3–12 | MR | Zbl

[2] Abanin A. V., “Geometricheskie kriterii predstavleniya analiticheskikh funktsii ryadami obobschennykh eksponent”, Dokl. RAN., 323:5 (1992), 807–810 | MR | Zbl

[3] Abanin A. V., “Netrivialnye razlozheniya nulya i absolyutno predstavlyayuschie sistemy”, Mat. zametki., 57:4 (1995), 483–497 | DOI | MR | Zbl

[4] Abanin A. V., Slabo dostatochnye mnozhestva i absolyutno predstavlyayuschie sistemy, Diss. na soisk. uch. step. doktora fiz.-mat. nauk., IMM UrO RAN, Ekaterinburg, 1995

[5] Azarin V. S., “O luchakh vpolne regulyarnogo rosta tseloi funktsii”, Mat. sb., 79 (121):4 (8) (1969), 463–476 | Zbl

[6] Andrashko M. I., “Ekstremalnii indikator tsiloï funktsiï poryadku menshe odinitsi z dodatnimi nulyami”, Dopovidi AN URSR., 1960, no. 7, 869–872

[7] Akhiezer N. I, “O nekotorykh svoistvakh tselykh transtsendentnykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. mat., 10:5 (1946), 411–428 | MR | Zbl

[8] Akhiezer N. I, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[9] Bakan A. G., “Polinomialnyi vid uslovii Lui de Branzha plotnosti algebraicheskikh mnogochlenov v prostranstve $C^{0}_{w}$”, Ukr. mat. zh., 57:3 (2005), 305–319 | MR | Zbl

[10] Bakan A. G., “Razlozhenie obratnoi velichiny tseloi funktsii na prostye drobi”, Dokl. NAN Ukrainy., 2009, no. 2, 11–13 | Zbl

[11] Braichev G. G., “Naimenshii tip tseloi funktsii poryadka $\rho\in (0,1)$ s polozhitelnymi kornyami zadannykh usrednennykh plotnostei”, Mat. sb., 203:7 (2012), 31–56 | DOI | MR

[12] Braichev G. G., “Tochnye otsenki tipa tseloi funktsii poryadka menshe edinitsy s nulyami na luche zadannykh usrednennykh plotnostei”, Dokl. RAN., 445:6 (2012), 615–617 | MR | Zbl

[13] Braichev G. G., “Tochnye otsenki tipov tseloi funktsii poryadka $\rho\in (0,1)$ s nulyami na luche”, Ufim. mat. zh., 4:1 (2012), 29–37 | MR

[14] Braichev G. G., “Tochnye otsenki tipov tselykh funktsii s nulyami na luchakh”, Mat. zametki., 97:4 (2015), 503–515 | DOI | MR | Zbl

[15] Braichev G. G., Sherstyukov V. B., “O naimenshem vozmozhnom tipe tselykh funktsii poryadka $\rho\in (0,1)$ s polozhitelnymi nulyami”, Izv. RAN. Cer. mat., 75:1 (2011), 3–28 | DOI | MR | Zbl

[16] Braichev G. G., Sherstyukova O. V., “Naibolshii vozmozhnyi nizhnii tip tseloi funktsii poryadka $\rho\in (0,1)$ s nulyami fiksirovannykh $\rho$-plotnostei”, Mat. zametki., 90:2 (2011), 199–215 | DOI | MR | Zbl

[17] Bratischev A. V., “K odnoi zadache A. F. Leonteva”, Dokl. AN SSSR., 270:2 (1983), 265–267 | MR

[18] Bratischev A. V., “Odin tip otsenok snizu tselykh funktsii konechnogo poryadka i nekotorye prilozheniya”, Izv. AN SSSR. Ser. mat., 48:3 (1984), 451–475 | MR

[19] Bratischev A. V., “Vozniknovenie i razvitie ponyatiya indeksa kondensatsii”, Aktualnye voprosy teorii funktsii, Izd-vo RGU, Rostov-na-Donu, 1986, 50–55

[20] Bratischev A. V., Bazisy Kete, tselye funktsii i ikh prilozheniya, Diss. na soisk. uch. step. doktora fiz.-mat. nauk., IMM UrO RAN, Ekaterinburg, 1998

[21] Gaisin A. M., “Ob odnoi gipoteze Polia”, Izv. AN SSSR. Ser. mat., 58:2 (1994), 73–92 | MR | Zbl

[22] Gaisin A. M., “Reshenie problemy Poia”, Mat. sb., 193:6 (2002), 39–60 | DOI | MR | Zbl

[23] Govorov N. V., “Ekstremalnii indikator tsiloï funktsiï z dodatnimi nulyami zadanoï verkhnoï ta nizhnoï gustini”, Dopovidi AN URSR., 1966, no. 2, 148–150 | Zbl

[24] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozheniya k teorii tselykh funktsii, I”, Mat. sb., 58 (100):3 (1962), 289–334 | Zbl

[25] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozheniya k teorii tselykh funktsii, II”, Mat. sb., 61 (103):3 (1963), 334–349 | Zbl

[26] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozheniya k teorii tselykh funktsii, III”, Mat. sb., 65 (107):3 (1964), 414–453

[27] Goldberg A. A., “Integral po poluadditivnoi mere i ego prilozheniya k teorii tselykh funktsii, IV”, Mat. sb., 66 (108):3 (1965), 411–457 | Zbl

[28] Goldberg A. A., “Ob odnom klasse tselykh funktsii”, Dokl. AN SSSR., 229:1 (1976), 39–41 | MR

[29] Goldberg A. A., Levin B. Ya., Ostrovskii I. V., “Tselye i meromorfnye funktsii”, Kompleksnyi analiz. Odna peremennaya–1, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napravleniya, 85, VINITI, M., 1991, 5–186

[30] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970

[31] Kondratyuk A. A., “Ekstremalnyi indikator dlya tselykh funktsii s polozhitelnymi nulyami”, Lit. mat. sb., 7:1 (1967), 79–117

[32] Kondratyuk A. A., “Ekstremalnyi indikator dlya tselykh funktsii s polozhitelnymi nulyami, II”, Lit. mat. sb., 8:1 (1968), 65–85

[33] Kondratyuk A. A., “Tselye funktsii s polozhitelnymi nulyami, imeyuschimi konechnuyu maksimalnuyu plotnost”, Respubl. nauch. sbornik, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 7, Izd-vo Kharkov. un-ta, Kharkov, 1968, 37–52

[34] Kondratyuk A. A., “Tselye funktsii s konechnoi maksimalnoi plotnostyu nulei”, Respubl. nauch. sbornik, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 10, Izd-vo Kharkov. un-ta, Kharkov, 1970, 57–70

[35] Kondratyuk A. A., “Ob ekstremalnom indikatore tselykh funktsii s polozhitelnymi nulyami”, Sib. mat. zh., 11:5 (1970), 1084–1092 | Zbl

[36] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Usp. mat. nauk., 36:1 (1981), 73–126 | MR | Zbl

[37] Korobeinik Yu. F., “Granichnye svoistva analiticheskikh reshenii differentsialnykh uravnenii beskonechnogo poryadka”, Mat. sb., 115:3 (1981), 364–390 | MR

[38] Korobeinik Yu. F., “Uravneniya svertki v kompleksnoi oblasti”, Mat. sb., 127:2 (1985), 173–197 | MR

[39] Korobeinik Yu. F., “Maksimalnye i $\gamma$-dostatochnye mnozhestva. Prilozheniya k tselym funktsiyam. I”, Respubl. nauch. sbornik, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 54, Izd-vo Kharkov. un-ta, Kharkov, 1990, 42–49

[40] Korobeinik Yu. F., “Maksimalnye i $\gamma$-dostatochnye mnozhestva. Prilozheniya k tselym funktsiyam. II”, Respubl. nauch. sbornik, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 55, Izd-vo Kharkov. un-ta, Kharkov, 1991, 23–34

[41] Korobeinik Yu. F., O razreshimosti v kompleksnoi oblasti nekotorykh obschikh klassov lineinykh operatornykh uravnenii, TsVVR, Rostov-na-Donu, 2005

[42] Krasichkov I. F., “Otsenki snizu dlya tselykh funktsii konechnogo poryadka”, Sib. mat. zh., 6:4 (1965), 840–861 | MR | Zbl

[43] Krein M. G., “Ob odnom zamechatelnom klasse ermitovykh operatorov”, Dokl. AN SSSR., 44:5 (1944), 191–195

[44] Krein M. G., “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. mat., 11:4 (1947), 309–326 | Zbl

[45] Krein M. G., “O neopredelennom sluchae kraevoi zadachi Shturma—Liuvillya v intervale $(0,\infty)$”, Izv. AN SSSR. Ser. mat., 16:4 (1952), 293–324

[46] Krivosheev A. S., “Kriterii analiticheskogo prodolzheniya funktsii iz invariantnykh podprostranstv v vypuklykh oblastyakh kompleksnoi ploskosti”, Izv. RAN. Ser. mat., 68:1 (2004), 43–78 | DOI | MR | Zbl

[47] Krivosheeva O. A., “Osobye tochki ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz., 23:2 (2011), 162–205 | MR

[48] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[49] Levin B. Ya., Dopolneniya i ispravleniya k knige «Raspredelenie kornei tselykh funktsii», Preprint FTINT AN USSR, Kharkov, 1978

[50] Leontev A. F., “Ob usloviyakh razlozhimosti analiticheskikh funktsii v ryady Dirikhle”, Izv. AN SSSR. Ser. mat., 36:6 (1972), 1282–1295 | Zbl

[51] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[52] Leontev A. F., “Predstavlenie funktsii ryadami eksponent”, Zap. nauchn. sem. LOMI, 81, 1978, 255–257

[53] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[54] Maergoiz L. S., “Indikatornaya diagramma tseloi funktsii utochnennogo poryadka i ee obobschennye preobrazovaniya Borelya—Laplasa”, Algebra i analiz., 12:2 (2000), 1–63

[55] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[56] Markushevich A. I., Teoriya analiticheskikh funktsii. II. Dalneishee postroenie teorii, Nauka, M., 1968 | MR

[57] Melikhov C. N., “O razlozhenii analiticheskikh funktsii v ryady eksponent”, Izv. AN SSSR. Ser. mat., 52:5 (1988), 991–1004 | Zbl

[58] Melikhov C. N., Pravye obratnye k operatoram predstavleniya ryadami eksponent i svertki, Diss. na soisk. uch. step. doktora fiz.-mat. nauk., IMVTs UNTs RAN, Ufa, 2003

[59] Melnik Yu. I., “O predstavlenii regulyarnykh funktsii ryadami tipa ryadov Dirikhle”, Issledovanie po teorii priblizhenii funktsii i ikh prilozheniya, Naukova Dumka, Kiev, 1978, 132–141

[60] Melnik Yu. I., “Ob usloviyakh skhodimosti ryadov Dirikhle, predstavlyayuschikh regulyarnye funktsii”, Matematicheskii analiz i teoriya veroyatnostei, Naukova Dumka, Kiev, 1978, 120–123

[61] Melnik Yu. I., “Ob usloviyakh razlozhimosti regulyarnykh funktsii v ryady eksponent”, Vsesoyuz. simp. po teorii approksimatsii funktsii v kompleksnoi oblasti, Tez. dokl, BF AN SSSR, Ufa, 1980, 94

[62] Myshakov F. S., “Analog teoremy Valirona—Goldberga pri ogranichenii na usrednennuyu schitayuschuyu funktsiyu mnozhestva kornei”, Mat. zametki., 96:5 (2014), 794–798 | DOI | MR | Zbl

[63] Popov A. Yu., “O polnote v prostranstvakh analiticheskikh funktsii sistem eksponent s veschestvennymi pokazatelyami zadannoi verkhnei plotnosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1999, no. 5, 48–52 | Zbl

[64] Popov A. Yu., “Tochnaya otsenka indeksa kondensatsii”, Math. Montisnigri., 11 (1999), 67–103 | MR | Zbl

[65] Popov A. Yu., “Ekstremalnye zadachi v teorii analiticheskogo prodolzheniya”, Mat. sb., 190:5 (1999), 113–138 | DOI | MR | Zbl

[66] Popov A. Yu., Ekstremalnye zadachi v teorii tselykh funktsii, Diss. na soisk. uch. step. doktora fiz.-mat. nauk., MGU, M., 2005

[67] Popov A. Yu., “Naimenshii vozmozhnyi tip pri poryadke $\rho1$ kanonicheskikh proizvedenii s polozhitelnymi nulyami zadannoi verkhnei $\rho$-plotnosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2005, no. 1, 31–36 | Zbl

[68] Popov A. Yu., “O naimenshem tipe tseloi funktsii poryadka $\rho$ s kornyami zadannoi verkhnei $\rho$-plotnosti, lezhaschimi na odnom luche”, Mat. zametki., 85:2 (2009), 246–260 | DOI | Zbl

[69] Popov A. Yu., “Razvitie teoremy Valirona—Levina o naimenshem vozmozhnom tipe tseloi funktsii s zadannoi verkhnei $\rho$-plotnostyu kornei”, Sovr. mat. Fundam. napravl., 49, 2013, 132–164

[70] Popov A. Yu., “Naibolshii vozmozhnyi rost maksimuma modulya kanonicheskogo proizvedeniya netselogo poryadka s zadannoi mazhorantoi schitayuschei funktsii kornei”, Mat. sb., 204:5 (2013), 67–108 | DOI | MR | Zbl

[71] Sedletskii A. M., Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[72] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985

[73] Sumin E. V., Sherstyukov V. B., “Primenenie ryadov Kreina k vychisleniyu summ, soderzhaschikh nuli funktsii Besselya”, Zh. vych. mat. mat. fiz., 55:4 (2015), 47–54

[74] Khabibullin B. N., “O tipe tselykh i meromorfnykh funktsii”, Mat. sb., 183:11 (1992), 35–44 | Zbl

[75] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2006

[76] Khabibullin B. N., “Posledovatelnosti nulei golomorfnykh funktsii, predstavlenie meromorfnykh funktsii. II. Tselye funktsii”, Mat. sb., 200:2 (2009), 129–158 | DOI | Zbl

[77] Sherstyukov V. B., “K voprosu o $\gamma$-dostatochnykh mnozhestvakh”, Sib. mat. zh., 41:4 (2000), 935–943 | MR | Zbl

[78] Sherstyukov V. B., “Ob odnoi zadache Leonteva i predstavlyayuschikh sistemakh eksponent”, Mat. zametki., 74:2 (2003), 301–313 | DOI | Zbl

[79] Sherstyukov V. B., “O nekotorykh priznakakh polnoi regulyarnosti rosta tselykh funktsii eksponentsialnogo tipa”, Mat. zametki., 80:1 (2006), 119–130 | DOI | MR | Zbl

[80] Sherstyukov V. B., “O regulyarnosti rosta kanonicheskikh proizvedenii s veschestvennymi nulyami”, Mat. zametki., 82:4 (2007), 621–630 | DOI | MR | Zbl

[81] Sherstyukov V. B., “Predstavlenie obratnoi velichiny tseloi funktsii ryadom prosteishikh drobei i eksponentsialnaya approksimatsiya”, Mat. sb., 200:3 (2009), 147–160 | DOI | MR | Zbl

[82] Sherstyukov V. B., “Dvoistvennaya kharakterizatsiya absolyutno predstavlyayuschikh sistem v induktivnykh predelakh banakhovykh prostranstv”, Sib. mat. zh., 51:4 (2010), 930–943 | MR | Zbl

[83] Sherstyukov V. B., “Razlozhenie obratnoi velichiny tseloi funktsii s nulyami v polose v ryad Kreina”, Mat. sb., 202:12 (2011), 137–156 | DOI | MR | Zbl

[84] Sherstyukov V. B., “K probleme Leonteva o tselykh funktsiyakh vpolne regulyarnogo rosta”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 13:2 (2013), 30–35 | Zbl

[85] Sherstyukov V. B., “Raspredelenie nulei kanonicheskikh proizvedenii i vesovoi indeks kondensatsii”, Mat. sb., 206:9 (2015), 140–182 | DOI

[86] Sherstyukov V. B., “Minimalnoe znachenie tipa tseloi funktsii poryadka $\rho\in(0,1)$, vse nuli kotoroi lezhat v ugle i imeyut zadannye plotnosti”, Ufim. mat. zh., 8:1 (2016), 113–126 | MR

[87] Sherstyukov V. B., Asimptoticheskie svoistva tselykh funktsii, korni kotorykh lezhat v nekotorom ugle, Diss. na soisk. uch. step. doktora fiz.-mat. nauk., MGU, M., 2017

[88] Sherstyukov V. B., Sumin E. V., Tischenko M. M., “Razlozhenie obratnoi velichiny tseloi funktsii s nulyami v poluploskosti v ryad prosteishikh drobei”, Vestn. MGOU. Ser. Fiz. Mat., 2011, no. 3, 43–49

[89] Sherstyukov V. B., Sumin E. V., Tischenko M. M., “Vychislenie «regulyarizovannykh» summ, sostavlennykh po nulyam integrala oshibok”, Vestn. NIYaU MIFI. Ser. Prikl. mat. mat. fiz., 3:1 (2014), 24–26 | DOI

[90] Sherstyukova O. V., “Ob ekstremalnom tipe tseloi funktsii poryadka menshe edinitsy s nulyami fiksirovannykh plotnostei i shaga”, Ufim. mat. zh., 4:1 (2012), 161–165 | MR

[91] Sherstyukova O. V., “O naimenshem tipe tselykh funktsii poryadka $\rho\in(0,1)$ s nulyami na luche”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 15:4 (2015), 433–441 | MR | Zbl

[92] Sherstyukova O. V., “Zadacha o naimenshem tipe tselykh funktsii poryadka $\rho\in(0,1)$ s polozhitelnymi nulyami zadannykh plotnostei i shaga”, Ufim. mat. zh., 7:4 (2015), 146–154 | MR

[93] Abakumov E., Baranov A., Belov Y., Krein-type theorems and ordered structure for Cauchy–De Branges spaces, arXiv: 1802.03385v1 [math.CV] | MR

[94] Bakan A. G., Polynomial approximation in $L_{p}(\mathbb R, d\mu)$, Preprint, Natl. Acad. Sci. of Ukraine, Inst. of Math., Kiev, 1998 | MR

[95] Bakan A. G., “Polynomial density in $L_{p}(\mathbb R, d\mu)$ and representation of all measures which generate a determinate Hamburger moment problem”, Approximation, Optimization, and Mathematical Economics, ed. Lassonde M., Physica-Verlag, Heidelberg–New York, 2001, 37–46 | DOI | MR | Zbl

[96] Berg C., Pedersen H., “Nevanlinna matrices of entire functions”, Math. Nachr., 171:1 (1995), 29–52 | DOI | MR | Zbl

[97] Bernstein V., Leçons sur les progrès récents de la théorie séries de Dirichlet, Gauthier-Villars, Paris, 1933

[98] Borichev A., Sodin M., “Krein's entire functions and the Bernstein approximation problem”, Ill. J. Math., 45:1 (2001), 167–185 | DOI | MR | Zbl

[99] De Branges L., “The Bernstein problem”, Proc. Am. Math. Soc., 10 (1959), 825–832 | DOI | MR | Zbl

[100] De Branges L., Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs–New York, 1968 | MR | Zbl

[101] Eremenko A., Yuditskii P., An extremal problem for a class of entire functions of exponential type, arXiv: 0807.2054 [math. CV] | MR

[102] Forsyth A. R., “The expression of Bessel functions of positive order as products, and of their inverse powers as sums of rational fractions”, v. 50, Messenger of Mathematics, eds. Glaisher J. W. L., 1920–1921, 129–149 | Zbl

[103] Hamburger H. L., “Hermitian transformation of defficiency index $(1,1)$, Jacobi matrices and undetermined moment problems”, Am. J. Math., 66:4 (1944), 489–522 | DOI | MR | Zbl

[104] Koosis P., The Logarithmic Integral, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[105] Kostin A. B., Sherstyukov V. B., “Calculation of Rayleigh type sums for zeros of the equation arising in spectral problem”, J. Phys. Conf. Ser., 937 (2017), 012022 | DOI

[106] Levin B., Lyubarskii Yu., Sodin M., Tkachenko V., Lectures on Entire Functions, Am. Math. Soc., Providence, Rhode Island, 1996 | MR | Zbl

[107] Maergoiz L. S., “On partial fraction expansion for meromorphic functions”, Zh. mat. fiz. anal., geom., 9:3 (2002), 487–492 | MR | Zbl

[108] Maergoiz L. S., “On the expansion of a meromorphic function in partial fractions”, Ufim. mat. zh., 8:2 (2016), 106–113 | MR

[109] Malliavin P., Rubel L. A., “On small entire functions of exponential type with given zeros”, Bull. Soc. Math. France., 89 (1961), 175–206 | DOI | MR | Zbl

[110] Redheffer R. M., “On even entire functions with zeros having a density”, Trans. Am. Math. Soc., 77 (1954), 32–61 | DOI | MR | Zbl

[111] Redheffer R. M., “Completeness of sets of complex exponentials”, Adv. Math., 24:1 (1977), 1–62 | DOI | MR | Zbl

[112] Rubel L. A., “Necessary and sufficient conditions for Carlson’s theorem on entire functions”, Trans. Am. Math. Soc., 83:2 (1956), 417–429 | MR | Zbl

[113] Sneddon I. N., “On some infinite series involving the zeros of Bessel functions of the first kind”, Proc. Glasgow Math. Ass., 4:3 (1960), 144–156 | DOI | MR | Zbl

[114] Valiron G., “Sur les fonctions entières d’ordre nul et d’ordre fini et en particulier les fonctions à correspondance régulière”, Ann. Fac. Sci. Toulouse. Ser. 3., 5 (1913), 117–257 | DOI | MR