Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_160_a9, author = {A. B. Muravnik}, title = {On qualitative properties of sign-constant solutions of some quasilinear parabolic problems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {85--94}, publisher = {mathdoc}, volume = {160}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a9/} }
TY - JOUR AU - A. B. Muravnik TI - On qualitative properties of sign-constant solutions of some quasilinear parabolic problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 85 EP - 94 VL - 160 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_160_a9/ LA - ru ID - INTO_2019_160_a9 ER -
%0 Journal Article %A A. B. Muravnik %T On qualitative properties of sign-constant solutions of some quasilinear parabolic problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 85-94 %V 160 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_160_a9/ %G ru %F INTO_2019_160_a9
A. B. Muravnik. On qualitative properties of sign-constant solutions of some quasilinear parabolic problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 85-94. http://geodesic.mathdoc.fr/item/INTO_2019_160_a9/
[1] Barenblatt G. I., “Ob avtomodelnykh dvizheniyakh szhimaemoi zhidkosti v poristoi srede”, Prikl. mat. mekh., 16:6 (1952), 679–698 | Zbl
[2] Bitsadze A. V., “K teorii odnogo klassa nelineinykh uravnenii v chastnykh proizvodnykh”, Differ. uravn., 13:11 (1977), 1993–2008 | MR | Zbl
[3] Denisov V. N., Muravnik A. B., “O stabilizatsii resheniya zadachi Koshi dlya kvazilineinykh parabolicheskikh uravnenii”, Differ. uravn., 38:3 (2002), 351–355 | MR | Zbl
[4] Denisov V. N., Muravnik A. B., “Ob asimptotike resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya v poluprostranstve”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, Fizmatlit, M., 2003, 397–417 | Zbl
[5] Kalashnikov A. S., “O ponyatii konechnoi skorosti rasprostraneniya vozmuschenii”, Usp. mat. nauk, 34:2 (1979), 199–200 | MR | Zbl
[6] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, Usp. mat. nauk, 42:2 (1987), 135–176 | MR | Zbl
[7] Kalashnikov A. S., “Ob usloviyakh mgnovennoi kompaktifikatsii nositelei reshenii polulineinykh parabolicheskikh uravnenii i sistem”, Mat. zametki, 47:1 (1990), 74–80 | MR | Zbl
[8] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. Mat. in-ta im. V. A. Steklova, 234, 2001, 3–383
[9] Muravnik A. B., “O stabilizatsii reshenii nekotorykh singulyarnykh kvazilineinykh parabolicheskikh zadach”, Mat. zametki, 74:6 (2003), 858–865 | DOI | MR | Zbl
[10] Muravnik A. B., “On properties of the stabilization functional of the Cauchy problem for quasilinear parabolic equations”, Tr. in-ta mat. NAN Belarusi, 12:2 (2004), 133–137 | MR
[11] Muravnik A. B., “O stabilizatsii reshenii singulyarnykh ellipticheskikh uravnenii”, Fundam. prikl. mat., 12:4 (2006), 169–186
[12] Muravnik A. B., “O razrushenii reshenii nekotorykh sistem vyrozhdayuschikhsya i singulyarnykh kvazilineinykh parabolicheskikh neravenstv”, Chernozemnyi almanakh nauch. issled. Ser. «Fundamentalnaya matematika», 2009, no. 1 (8), 312–323
[13] Muravnik A. B., “O razrushenii reshenii nekotorykh sistem kvazilineinykh parabolicheskikh neravenstv”, Sovr. mat. Fundam. napr., 48, 2013, 84–92
[14] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | MR
[15] Pokhozhaev S. I., “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Mat. sb., 113:2 (1980), 324–338 | MR | Zbl
[16] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR
[17] Amann H., “Existence and multiplicity theoremes for semi-linear elliptic boundary-value problems”, Math. Z., 150 (1976), 281–295 | DOI | MR | Zbl
[18] Amann H., Crandall M. G., “On some existence theoremes for semi-linear elliptic equations”, Ind. Univ. Math. J., 27:5 (1978), 779–790 | DOI | MR | Zbl
[19] Anh V. V., Leonenko N. N., Sakhno L. M., “Spectral properties of Burgers and KPZ turbulence”, J. Stat. Phys., 122:5 (2006), 949–974 | DOI | MR | Zbl
[20] Barral J., Jin X., Rhodes R., Vargas V., “Gaussian multiplicative chaos and KPZ duality”, Commun. Math. Phys., 323:2 (2013), 451–485 | DOI | MR | Zbl
[21] Benjamini I., Schramm O., “KPZ in one dimensional random geometry of multiplicative cascades”, Commun. Math. Phys., 289:2 (2009), 653–662 | DOI | MR | Zbl
[22] Bernardin C., Gonçalves P., Sethuraman S., “Occupation times of long-range exclusion and connections to KPZ class exponents”, Probab. Th. Related Fields, 166:1-2 (2016), 365–428 | DOI | MR | Zbl
[23] Corwin I., Ferrari P. L., Péché S., “Universality of slow decorrelation in KPZ growth”, Ann. Inst. H. Poincaré. Probab. Stat., 48:1 (2012), 134–150 | DOI | MR | Zbl
[24] Denisov V. N., Muravnik A. B., “On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations”, Electr. Res. Ann. Am. Math. Soc., 9 (2003), 88–93 | DOI | MR | Zbl
[25] Duplantier B., “Liouville quantum gravity and the KPZ relation: A rigorous perspective”, XVIth Int. Congr. on Math. Phys., World Scientific, Hackensack, New Jersey, 2010, 56–85 | DOI | MR | Zbl
[26] Evans L. C., Knerr B. F., “Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities”, Ill. J. Math., 23:1 (1979), 153–166 | DOI | MR | Zbl
[27] Funaki T., Hoshino M., “A coupled KPZ equation, its two types of approximations, and existence of global solutions”, J. Funct. Anal., 273:3 (2017), 1165–1204 | DOI | MR | Zbl
[28] Galaktionov V. A., Mitidieri E. L., Pohozaev S. I., Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion, and Schrödinger Equations, CRC Press, Boca Raton, FL, 2015 | MR | Zbl
[29] Ginelli F., Hinrichsen H., “Mean field theory for skewed height profiles in KPZ growth processes”, J. Phys. A, 37:46 (2004), 11085–11100 | DOI | MR | Zbl
[30] Gladkov A., Guedda M., Kersner R., “A KPZ growth model with possibly unbounded data: correctness and blow-up”, Nonlin. Anal., 68:7 (2008), 2079–2091 | DOI | MR | Zbl
[31] Guedda M., Kersner R., “Self-similar solutions to the generalized deterministic KPZ equation”, Nonlin. Differ. Equ. Appl., 10:1 (2003), 1–13 | DOI | MR | Zbl
[32] Kardar M., Parisi G., Zhang Y.-C., “Dynamic scaling of growing interfaces”, Phys. Rev. Lett., 19 (1986), 889–892 | DOI
[33] Kazdan I. L., Kramer R. I., “Invariant criteria for existence of solutions to secondorder quasilinear elliptic equations”, Commun. Pure Appl. Math., 31:7 (1978), 619–645 | DOI | MR | Zbl
[34] Medina E., Hwa T., Kardar M., Zhang Y.-C., “Burgers equation with correlated noise: Renormalization group analysis and applications to directed polymers and interface growth”, Phys. Rev., A39 (1989), 3053–3075 | DOI | MR
[35] Muravnik A. B., “On stabilization of solutions of singular quasi-linear parabolic equations with singular potentials”, Fluid Mech. Appl., 71 (2002), 335–340 | MR | Zbl
[36] Muravnik A. B., “On stabilization of solutions of elliptic equations containing Bessel operators”, Integral Methods in Science and Engineering. Analytic and Numerical Techniques, Birkhäuser, Boston–Basel–Berlin, 2004, 157–162 | DOI | MR | Zbl
[37] Muravnik A. B., “On a quasilinear analog of Gidas—Spruck theorem”, Nonlin. Bound. Value Probl., 14 (2004), 105–111. | Zbl
[38] Muravnik A. B., “On local blow-up of solutions of quasilinear elliptic and parabolic inequalities”, Nonlin. Bound. Value Probl., 16 (2006), 86–95 | MR | Zbl
[39] Muravnik A. B., “On nonexistence of global solutions of the Cauchy problem for quasilinear parabolic inequalities”, Analytic Methods of Analysis and Differential Equations, Cambridge Sci. Publ., Cottenham, 2006, 183–197 | MR | Zbl
[40] Quastel J., “KPZ universality for KPZ”, XVIth Int. Congr. on Math. Phys., World Scientific, Hackensack, New Jersey, 2010, 401–405 | DOI | MR | Zbl
[41] Schehr G., “Extremes of $N$ vicious walkers for large $N$: application to the directed polymer and KPZ interfaces”, J. Stat. Phys., 149:3 (2012), 385–410 | DOI | MR | Zbl
[42] Spohn H., “Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals”, Phys. A, 369:1 (2006), 71–99 | DOI | MR
[43] Spohn H., “KPZ scaling theory and the semidiscrete directed polymer model”, Math. Sci. Res. Inst. Publ., 65 (2014), 483–493 | MR | Zbl