Existence of solutions of anisotropic elliptic equations with variable indices of nonlinearity in $\mathbb{R}^n$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a certain class of anisotropic second-order elliptic equations of divergent type with variable indices of nonlinearity. We examine conditions of the solvability in the whole space $\mathbb{R}^n$, $n\geq 2$. We prove the existence of solutions without restrictions to the growth rate as $|\mathrm{x}|\rightarrow \infty$.
Mots-clés : anisotropic elliptic equation, existence
Keywords: generalized solution, variable index of nonlinearity, $p(\mathrm{x})$-Laplacian.
@article{INTO_2019_160_a6,
     author = {L. M. Kozhevnikova and A. Sh. Kamal{\cyre}tdinov},
     title = {Existence of solutions of anisotropic elliptic equations with variable indices of nonlinearity in $\mathbb{R}^n$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a6/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. Sh. Kamalеtdinov
TI  - Existence of solutions of anisotropic elliptic equations with variable indices of nonlinearity in $\mathbb{R}^n$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 49
EP  - 60
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a6/
LA  - ru
ID  - INTO_2019_160_a6
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. Sh. Kamalеtdinov
%T Existence of solutions of anisotropic elliptic equations with variable indices of nonlinearity in $\mathbb{R}^n$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 49-60
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a6/
%G ru
%F INTO_2019_160_a6
L. M. Kozhevnikova; A. Sh. Kamalеtdinov. Existence of solutions of anisotropic elliptic equations with variable indices of nonlinearity in $\mathbb{R}^n$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 49-60. http://geodesic.mathdoc.fr/item/INTO_2019_160_a6/

[1] Alkhutov Yu. A., “Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Differ. uravn., 33:12 (1997), 1651–1660 | MR | Zbl

[2] Zhikov V. V., “O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta”, Probl. mat. anal., 2011, no. 54, 23–112 | Zbl

[3] Kozhevnikova L. M., Kamaletdinov A. Sh., “Suschestvovanie reshenii anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Vestn. VolGU. Ser. 1. Mat. Fiz., 2016, no. 5 (36), 29–41 | MR

[4] Kozhevnikova L. M., Khadzhi A. A., “Suschestvovanie reshenii anizotropnykh ellipticheskikh uravnenii s nestepennymi nelineinostyami v neogranichennykh oblastyakh”, Mat. sb., 206:8 (2015), 99–126 | DOI | Zbl

[5] Laptev G. G., “Suschestvovanie reshenii nekotorykh kvazilineinykh ellipticheskikh uravnenii v $\mathbb{R}^N$ bez uslovii na beskonechnosti”, Fundam. prikl. mat., 12:4 (2006), 133–147 | MR

[6] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[7] Benboubker M. B., Azroul E., Barbara A., “Quasilinear elliptic problems with nonstandartd growths”, Electr. J. Differ. Equ., 2011, no. 62, 1–16 | MR

[8] Bokalo M., Domanska O., “On well-posedness of boundary problems for elliptic equations in general anisotropic Lebesgue–Sobolev spaces”, Math. Stud., 28:1 (2007), 77–91 | MR | Zbl

[9] Boccardo L., Gallouet T., Vazquez J. L., “Nonlinear elliptic equations in $R^N$ without growth restrictions on the data”, J. Differ. Equ., 105:2, 334–363 | DOI | MR | Zbl

[10] Brezis H., “Semilinear equations in $\mathbb{R}^N$ without condition at infnity”, Appl. Math. Optim., 12:3 (1984), 271–282 | DOI | MR | Zbl

[11] Browder F. E., “Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains”, Proc. Natl. Acad. Sci., 74:7 (1977), 2659–2661 | DOI | MR | Zbl

[12] Diaz J. I., Oleinik O. A., “Nonlinear elliptic boundary-value problems in unbounded domains and the asymptotic behaviour of its solution”, C. R. Acad. Sci. Ser. I. Math., 315:7 (1992), 787–792 | MR | Zbl

[13] Diening L., Harjulehto P., Hästö P., Ru{z}i{c}ka M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer, 2011 | MR | Zbl

[14] Domanska O. V., “Boundary problems for elliptic system with anisotropic nonlinearity”, Potential Anal., 660 (2009), 5–13

[15] Fan X., “Anisotropic variable exponent Sobolev spaces and $p(x)$-Laplacian equations”, Complex Var. Ellipt. Equ., 56:7–9 (2011), 623–642 | DOI | MR | Zbl

[16] Fan X., Zhao D., “On the spaces $L^{p(x)}$ and $W^{m,p(x)}$”, J. Math. Anal. Appl., 263 (2001), 424–446 | DOI | MR | Zbl

[17] Zhang C., Zhou S., Ge B., “Gradient estimates for the $p(x)$-Laplacian equation in $\mathbb{R}^N$”, Ann. Polon. Math., 114:1 (2015), 45–65 | DOI | MR | Zbl