Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_160_a12, author = {A. V. Setukha}, title = {Method of boundary integral equations with hypersingular integrals in boundary-value problems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {114--125}, publisher = {mathdoc}, volume = {160}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a12/} }
TY - JOUR AU - A. V. Setukha TI - Method of boundary integral equations with hypersingular integrals in boundary-value problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 114 EP - 125 VL - 160 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_160_a12/ LA - ru ID - INTO_2019_160_a12 ER -
%0 Journal Article %A A. V. Setukha %T Method of boundary integral equations with hypersingular integrals in boundary-value problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 114-125 %V 160 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_160_a12/ %G ru %F INTO_2019_160_a12
A. V. Setukha. Method of boundary integral equations with hypersingular integrals in boundary-value problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 114-125. http://geodesic.mathdoc.fr/item/INTO_2019_160_a12/
[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978
[2] Aparinov V. A., Dvorak A. V., “Metod diskretnykh vikhrei s zamknutymi vikhrevymi ramkami”, Tr. VVIA im. N. E. Zhukovskogo, 1986, no. 1313, 424–432
[3] Belotserkovskii S. M., Nisht M. I., Otryvnoe i bezotryvnoe obtekanie tonkikh krylev idealnoi zhidkostyu, Nauka, M., 1978
[4] Vainikko G. M., Lifanov I. K., Poltavskii L. N., Chislennye metody v gipersingulyarnykh integralnykh uravneniyakh i ikh prilozheniya, Yanus-K, M., 2001
[5] Gutnikov V. A., Kiryakin V. Yu., Lifanov I. K. i dr., “O chislennom reshenii dvumernogo gipersingulyarnogo integralnogo uravneniya i o rasprostranenii zvuka v gorodskoi zastroike”, Zh. vychisl. mat. mat. fiz., 47:12 (2007), 2088–2100 | MR
[6] Davydov A. G., Zakharov E. V., Pimenov Yu. V., “Metod chislennogo resheniya zadach difraktsii elektromagnitnykh voln na nezamknutykh poverkhnostyakh proizvolnoi formy”, Dokl. RAN, 276:1 (1984), 96–100 | MR
[7] Daeva S. G., Setukha A. V., “O chislennom reshenii kraevoi zadachi neimana dlya uravneniya Gelmgoltsa metodom gipersingulyarnykh integralnykh uravnenii”, Vychisl. metody program. Novye vychisl. tekhnol., 16 (2015), 421–435
[8] Zakharov E. V., Ryzhakov G. V., Setukha A. V., “Chislennoe reshenie trekhmernykh zadach difraktsii elektromagnitnykh voln na sisteme idealnoprovodyaschikh poverkhnostei metodom gipersingulyarnykh integralnykh uravnenii”, Differ. uravn., 50:9 (2014), 1253–1263 | DOI | Zbl
[9] Zakharov E. V., Setukha A. V., Bezobrazova E. N., “Metod gipersingulyarnykh integralnykh uravnenii v trekhmernoi zadache difraktsii elektromagnitnykh voln na kusochno-odnorodnom dielektricheskom tele”, Differ. uravn., 51:9 (2015), 1206–1219 | DOI | Zbl
[10] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh. Psevdodifferentsialnye operatory v zadachakh difraktsii, IPRZhR, M., 1996
[11] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987
[12] Lebedeva S. G., Setukha A. V., “O chislennom reshenii polnogo dvumernogo gipersingulyarnogo uravneniya metodom diskretnykh osobennostei”, Differ. uravn., 49:2 (2013), 223–233 | Zbl
[13] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995
[14] Piven V. F., Matematicheskie modeli filtratsii zhidkosti, OGU, Orel, 2015
[15] Ryzhakov G. V., Setukha A. V., “O skhodimosti chislennogo metoda resheniya nekotorogo gipersingulyarnogo integralnogo uravneniya na zamknutoi poverkhnosti”, Differ. uravn., 46:9 (2010), 1343–1353 | MR | Zbl
[16] Setukha A. V., “Kraevaya zadacha Neimana s granichnym usloviem na razomknutoi ploskoi poverkhnosti”, Differ. uravn., 37:10 (2001), 1320–1338 | MR
[17] Setukha A. V., “O postroenii fundamentalnykh reshenii kraevoi zadachi Neimana v oblasti vne razomknutoi ploskoi poverkhnosti”, Differ. uravn., 38:4 (2002), 505–515 | MR | Zbl
[18] Setukha A. V., “Trekhmernaya kraevaya zadacha Neimana s obobschennymi granichnymi usloviyami i uravnenie Prandtlya”, Differ. uravn., 39:9 (2003), 1188–1200 | MR | Zbl
[19] Smirnov Yu. G., Matematicheskie metody issledovaniya zadach elektrodinamiki, Inf.-izd. tsentr PenzGU, Penza, 2009
[20] John L. V., Kubilay S., Integral Equation Methods for Electromagnetics, SciTech Publ., 2012
[21] McLean W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, 2000 | MR | Zbl
[22] Rao S. M., Wilton D. R., Glisson A. W., “Electromagnetic scattering by surfaces of arbitrary shape”, IEEE Trans. Antennas Propag., 30:3 (1982), 409–418 | DOI | MR
[23] Setukha A. V., Bezobrazova E. N., “The method of hypersingular integral equations in the problem of electromagnetic wave diffraction by a dielectric body with a partial perfectly conducting coating”, Russ. J. Numer. Anal. Math. Model., 32:6 (2017), 371–380 | DOI | MR | Zbl