On approximate solution of certain equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 9-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider problems of discrete approximation of special integral operators with the Calderon–Zygmund kernel. We introduce discrete spaces and discrete operators acting in these spaces that are used proposed for for the approximate solution of the corresponding equations. We propose theorems on the solvability of equations with discrete operators, compare integral operators with their discrete analogs, and obtain estimates of errors of approximate solutions.
Keywords: Calderon–Zygmund kernel, discrete operator, approximation measure, approximate solution.
Mots-clés : symbol
@article{INTO_2019_160_a1,
     author = {A. V. Vasil'ev},
     title = {On approximate solution of certain equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {9--17},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a1/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
TI  - On approximate solution of certain equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 9
EP  - 17
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a1/
LA  - ru
ID  - INTO_2019_160_a1
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%T On approximate solution of certain equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 9-17
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a1/
%G ru
%F INTO_2019_160_a1
A. V. Vasil'ev. On approximate solution of certain equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 9-17. http://geodesic.mathdoc.fr/item/INTO_2019_160_a1/

[1] Abdullaev S. K., “Mnogomernye singulyarnye integralnye uravneniya v prostranstvakh Geldera s vesom”, Dokl. AN SSSR, 292:4 (1987), 777–779 | MR | Zbl

[2] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike, Nauka, M., 1985

[3] Vasilev A. V., Vasilev V. B., “Priblizhennye resheniya mnogomernykh singulyarnykh integralnykh uravnenii i bystrye algoritmy ikh nakhozhdeniya”, Vladikavkaz. mat. zh., 16:1 (2014), 3–11 | MR | Zbl

[4] Vasilev A. V., Vasilev V. B., “Periodicheskaya zadacha Rimana i diskretnye uravneniya v svertkakh”, Differ. uravn., 51:5 (2015), 642–649 | DOI | Zbl

[5] Vasilev A. V., Vasilev V. B., “O razreshimosti nekotorykh diskretnykh uravnenii i svyazannykh s nimi otsenkakh diskretnykh operatorov”, Dokl. RAN, 464:6 (2015), 651–655 | DOI | Zbl

[6] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii. Izbrannye glavy, Izd-vo Kazansk. un-ta, Kazan, 1995

[7] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, Yanus, M., 1995

[8] Didenko V., Silbermann B., Approximation of Additive Convolution-Like Operators. Real $C^*$-Algebra Approach, Birkhäuser, Basel, 2008 | MR

[9] Mikhlin S. G., Prössdorf S., Singular Integral Operators, Springer-Verlag, Berlin, 1986 | MR | Zbl

[10] Vainikko G., Multidimensional Weakly Singular Integral Equations, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | Zbl

[11] Vasilyev A. V., Vasilyev V. B., “Numerical analysis for some singular integral equations”, Neural Parallel Sci. Comput., 20:3-4 (2012), 313–326 | MR

[12] Vasilyev A. V., Vasilyev V. B., “On the error estimate for calculating some singular integrals”, Proc. Appl. Math. Mech., 12 (2012), 665–666 | DOI | MR

[13] Vasilyev A. V., Vasilyev V. B., “Discrete singular operators and equations in a half-space”, Azerb. J. Math., 3:1 (2013), 84–93 | MR | Zbl

[14] Vasilyev A. V., Vasilyev V. B. Approximation rate and invertibility for some singular integral operators, Proc. Appl. Math. Mech., 13:1 (2013), 373–374 | DOI

[15] Vasilyev A. V., Vasilyev V. B., “Some common properties of certain continual and discrete convolutions”, Proc. Appl. Math. Mech., 14 (2014), 845–846 | DOI

[16] Vasilyev A. V., Vasilyev V. B., “Discrete singular integrals in a half-space”, Current Trends in Analysis and its Applications. Research Perspectives, Birkhäuser, Basel, 2015, 663–670 | DOI | MR | Zbl

[17] Vasilyev A. V., Vasilyev V. B., “On finite discrete operators and equations”, Proc. Appl. Math. Mech., 16:1 (2016), 771–772 | DOI

[18] Vasilyev A. V., Vasilyev V. B., “Discrete approximations for multidimensional singular integral operators”, Lect. Notes Comp. Sci., 10187 (2017), 706–712 | DOI | MR | Zbl

[19] Vasilyev A. V., Vasilyev V. B., “Two-scale estimates for special finite discrete operators”, Math. Model. Anal., 22:3 (2017), 300–310 | DOI | MR