Linear conjugation problem with a triangular matrix coefficient
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a classical linear conjugation problem for analytic vector-valued functions on a piecewise smooth curve with a triangular matrix coefficient in weighted Hölder spaces. For the two-dimensional case, conditions for the existence of a solution are found, a solution of this problem is given, and the construction of the canonical matrix function is analyzed in detail.
Keywords: linear conjugation problem, weighted space, canonical function.
@article{INTO_2019_160_a0,
     author = {G. N. Aver'yanov and A. P. Soldatov},
     title = {Linear conjugation problem with a triangular matrix coefficient},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {160},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/}
}
TY  - JOUR
AU  - G. N. Aver'yanov
AU  - A. P. Soldatov
TI  - Linear conjugation problem with a triangular matrix coefficient
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 8
VL  - 160
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/
LA  - ru
ID  - INTO_2019_160_a0
ER  - 
%0 Journal Article
%A G. N. Aver'yanov
%A A. P. Soldatov
%T Linear conjugation problem with a triangular matrix coefficient
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-8
%V 160
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/
%G ru
%F INTO_2019_160_a0
G. N. Aver'yanov; A. P. Soldatov. Linear conjugation problem with a triangular matrix coefficient. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/

[1] Averyanov G. N., Soldatov A. P., “Asimptotika reshenii zadachi lineinogo sopryazheniya dlya analiticheskikh funktsii v uglovykh tochkakh krivoi”, Differ. uravn., 52:9 (2016), 1150–1159 | DOI | MR | Zbl

[2] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970

[3] Gakhov F. D., Kraevye zadachi, Fizmatgiz, M., 1963

[4] Mescheryakova E. S., Soldatov A. P., “Zadacha Rimana—Gilberta v semeistve vesovykh prostranstv Geldera”, Differ. uravn., 52:1 (2016), 518–527 | DOI | MR

[5] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[6] Soldatov A. P., “Kpaevaya zadacha lineinogo soppyazheniya teopii funktsii”, Izv. AH SSSR. Sep. mat., 43:1 (1979), 184–202 | MR | Zbl