Linear conjugation problem with a triangular matrix coefficient
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a classical linear conjugation problem for analytic vector-valued functions on a piecewise smooth curve with a triangular matrix coefficient in weighted Hölder spaces. For the two-dimensional case, conditions for the existence of a solution are found, a solution of this problem is given, and the construction of the canonical matrix function is analyzed in detail.
Keywords:
linear conjugation problem, weighted space, canonical function.
@article{INTO_2019_160_a0,
author = {G. N. Aver'yanov and A. P. Soldatov},
title = {Linear conjugation problem with a triangular matrix coefficient},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--8},
year = {2019},
volume = {160},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/}
}
TY - JOUR AU - G. N. Aver'yanov AU - A. P. Soldatov TI - Linear conjugation problem with a triangular matrix coefficient JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 8 VL - 160 UR - http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/ LA - ru ID - INTO_2019_160_a0 ER -
%0 Journal Article %A G. N. Aver'yanov %A A. P. Soldatov %T Linear conjugation problem with a triangular matrix coefficient %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-8 %V 160 %U http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/ %G ru %F INTO_2019_160_a0
G. N. Aver'yanov; A. P. Soldatov. Linear conjugation problem with a triangular matrix coefficient. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Tome 160 (2019), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2019_160_a0/
[1] Averyanov G. N., Soldatov A. P., “Asimptotika reshenii zadachi lineinogo sopryazheniya dlya analiticheskikh funktsii v uglovykh tochkakh krivoi”, Differ. uravn., 52:9 (2016), 1150–1159 | DOI | MR | Zbl
[2] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970
[3] Gakhov F. D., Kraevye zadachi, Fizmatgiz, M., 1963
[4] Mescheryakova E. S., Soldatov A. P., “Zadacha Rimana—Gilberta v semeistve vesovykh prostranstv Geldera”, Differ. uravn., 52:1 (2016), 518–527 | DOI | MR
[5] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968
[6] Soldatov A. P., “Kpaevaya zadacha lineinogo soppyazheniya teopii funktsii”, Izv. AH SSSR. Sep. mat., 43:1 (1979), 184–202 | MR | Zbl