Around Baer--Kaplansky theorem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 46-67

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the example of modules and a number of familiar Abelian groups, we demonstrate the Kaplansky method of proving isomorphism theorems for endomorphism rings.
Keywords: Abelian group, endomorphism ring, isomorphism theorem for endomorphism rings, Baer–Kaplansky theorem, Kaplansky method.
@article{INTO_2019_159_a1,
     author = {P. A. Krylov and A. A. Tuganbaev and A. V. Tsarev},
     title = {Around {Baer--Kaplansky} theorem},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {46--67},
     publisher = {mathdoc},
     volume = {159},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - A. A. Tuganbaev
AU  - A. V. Tsarev
TI  - Around Baer--Kaplansky theorem
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 46
EP  - 67
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/
LA  - ru
ID  - INTO_2019_159_a1
ER  - 
%0 Journal Article
%A P. A. Krylov
%A A. A. Tuganbaev
%A A. V. Tsarev
%T Around Baer--Kaplansky theorem
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 46-67
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/
%G ru
%F INTO_2019_159_a1
P. A. Krylov; A. A. Tuganbaev; A. V. Tsarev. Around Baer--Kaplansky theorem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 46-67. http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/