Around Baer--Kaplansky theorem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 46-67
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the example of modules and a number of familiar Abelian groups, we demonstrate the Kaplansky method of proving isomorphism theorems for endomorphism rings.
Keywords:
Abelian group, endomorphism ring, isomorphism theorem for endomorphism rings, Baer–Kaplansky theorem, Kaplansky method.
@article{INTO_2019_159_a1,
author = {P. A. Krylov and A. A. Tuganbaev and A. V. Tsarev},
title = {Around {Baer--Kaplansky} theorem},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {46--67},
publisher = {mathdoc},
volume = {159},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/}
}
TY - JOUR AU - P. A. Krylov AU - A. A. Tuganbaev AU - A. V. Tsarev TI - Around Baer--Kaplansky theorem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 46 EP - 67 VL - 159 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/ LA - ru ID - INTO_2019_159_a1 ER -
%0 Journal Article %A P. A. Krylov %A A. A. Tuganbaev %A A. V. Tsarev %T Around Baer--Kaplansky theorem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 46-67 %V 159 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/ %G ru %F INTO_2019_159_a1
P. A. Krylov; A. A. Tuganbaev; A. V. Tsarev. Around Baer--Kaplansky theorem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 46-67. http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/