Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_159_a1, author = {P. A. Krylov and A. A. Tuganbaev and A. V. Tsarev}, title = {Around {Baer--Kaplansky} theorem}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {46--67}, publisher = {mathdoc}, volume = {159}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/} }
TY - JOUR AU - P. A. Krylov AU - A. A. Tuganbaev AU - A. V. Tsarev TI - Around Baer--Kaplansky theorem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 46 EP - 67 VL - 159 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/ LA - ru ID - INTO_2019_159_a1 ER -
%0 Journal Article %A P. A. Krylov %A A. A. Tuganbaev %A A. V. Tsarev %T Around Baer--Kaplansky theorem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 46-67 %V 159 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/ %G ru %F INTO_2019_159_a1
P. A. Krylov; A. A. Tuganbaev; A. V. Tsarev. Around Baer--Kaplansky theorem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 46-67. http://geodesic.mathdoc.fr/item/INTO_2019_159_a1/
[1] Krylov P. A., “Silno odnorodnye abelevy gruppy bez krucheniya”, Sib. mat. zh., 24:2 (1983), 77–84 | MR | Zbl
[2] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006
[3] Krylov P. A., Tuganbaev A. A., Moduli nad oblastyami diskretnogo normirovaniya, Faktorial Press, M., 2007
[4] Krylov P. A., Tuganbaev A. A., “Moduli nad koltsami formalnykh matrits”, Fundam. prikl. mat., 15:8 (2009), 145–211
[5] Krylov P. A., Tuganbaev A. A., “Formalnye matritsy i ikh opredeliteli”, Fundam. prikl. mat., 19:1 (2014), 65–119
[6] Krylov P. A., Tuganbaev A. A., Koltsa formalnykh matrits i moduli nad nimi, MTsNMO, M., 2017 | MR
[7] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1973
[8] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44:2 (1943), 192–227 | DOI | MR | Zbl
[9] Baer R., Linear Algebra and Projective Geometry, Academic Press, New York, 1952 | MR | Zbl
[10] Bazzoni S., Metelli C., “On Abelian torsion-free separable groups and their endomorphism rings”, Symp. Math., 23 (1979), 259–285 | MR | Zbl
[11] Files S. T., “Endomorphisms of local Warfield groups”, Contemp. Math., 171 (1994), 99–107 | DOI | MR | Zbl
[12] Files S. T., “Outer automorphisms of endomorphism rings of Warfield groups”, Arch. Math., 65 (1995), 15–22 | DOI | MR | Zbl
[13] Files S. T., “Endomorphism algebras of modules with distinguished torsion-free elements”, J. Algebra, 178 (1995), 264–276 | DOI | MR | Zbl
[14] Flagg M., “A Jacobson radical isomorphism theorem for torsion-free modules”, Models, Modules and Abelian Groups, eds. Göbel R., Goldsmith B., Walter de Gruyter, Berlin, 2008, 309–314 | MR | Zbl
[15] Flagg M., “Jacobson radical isomorphism theorems for mixed modules. Part one: determining the torsion”, Commun. Algebra, 37:5 (2009), 1739–1747 | DOI | MR | Zbl
[16] Flagg M., “The role of the Jacobson radical in isomorphism theorems”, Contemp. Math., 576 (2012), 77–88 | DOI | MR | Zbl
[17] Flagg M., “The Jacobson radical's role in isomorphism theorems for $p$-adic modules extends to topogical isomorphism”, Groups, Modules, and Model Theory—Surveys and Recent Developments, eds. Droste M., Fuchs L., Goldsmith B., Strüngmann L., Springer, 2017, 285–300 | DOI | MR
[18] Göbel R., May W., “The construction of mixed modules from torsion modules”, Arch. Math., 48 (1987), 476–490 | DOI | MR | Zbl
[19] Hausen J., Johnson J. A., “Determining Abelian $p$-groups by the Jacobson radical of their endomorphism rings”, J. Algebra, 174:1 (1995), 217–224 | DOI | MR | Zbl
[20] Hausen J., Praeger C. E., Schultz P., “Most Abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216 (1994), 431–436 | DOI | MR | Zbl
[21] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954 | MR | Zbl
[22] May W., “Endomorphism rings of Abelian groups with ample divisible subgroups”, Bull. London Math. Soc., 10:3 (1978), 270–272 | DOI | MR | Zbl
[23] May W., “Endomorphism rings of mixed Abelian groups”, Contemp. Math., 87 (1989), 61–74 | DOI | MR | Zbl
[24] May W., “Isomorphisms of endomorphism algebras over complete discrete valuation rings”, Math. Z., 204:4 (1990), 485–499 | DOI | MR | Zbl
[25] May W., “Endomorphism algebras of not necessarily cotorsion-free modules”, Abelian Groups and Noncommutative Rings, eds. Fuchs L., Goodearl K. R., Stafford J. T., Vinsonhaler C., Am. Math. Soc., Providence, Rhode Island, 1992, 257–264 | MR
[26] May W., “Endomorphisms over incomplete discrete valuation domains”, Contemp. Math., 171 (1994), 277–285 | DOI | MR | Zbl
[27] May W., “The theorem of Baer and Kaplansky for mixed modules”, J. Algebra, 177 (1995), 255–263 | DOI | MR | Zbl
[28] May W., “The use of the finite topology on endomorphism rings”, J. Pure Appl. Algebra, 163 (2001), 107–117 | DOI | MR | Zbl
[29] May W., Toubassi E., “Endomorphisms of Abelian groups and the theorem of Baer and Kaplansky”, J. Algebra, 43:1 (1976), 1–13 | DOI | MR | Zbl
[30] May W., Toubassi E., “A result on problem 87 of L. Fuchs”, Lect. Notes Math., 616, 1977, 354–367 | DOI | MR | Zbl
[31] May W., Toubassi E., “Isomorphisms of endomorphism rings of rank one mixed groups”, J. Algebra, 71:2 (1981), 508–514 | DOI | MR | Zbl
[32] May W., Toubassi E., “Endomorphisms of rank one mixed modules over discrete valuation rings”, Pac. J. Math., 108:1 (1983), 155–163 | DOI | MR | Zbl
[33] Mikhalev A. V., “Isomorphisms and anti-isomorphisms of endomorphism rings of modules”, Proc. First Int. Algebraic Workshop, Berlin, 1996, 69–122 | MR | Zbl
[34] Schultz P., “When is an Abelian $p$-group determined by the Jacobson radical of its endomorphism ring”, Contemp. Math., 171, 1994, 385–396 | DOI | MR | Zbl
[35] Toubassi E., May W., “Classifying endomorphism rings of rank one mixed groups”, Abelian Groups and Modules, Proc. Conf. (Udine, 1984), Springer, Vienna, 1984, 253–263 | MR