Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 3-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains both previously known and new results on automorphism-invariant modules, automorphism-coinvariant modules, and modules that are invariant or coinvariant with respect to idempotent endomorphisms of their hulls and their covers, respectively. The main results are given with proofs.
Mots-clés : quasi-injective module, quasi-projective module, automorphism-invariant module, automorphism-liftable module, automorphism-coinvariant module
Keywords: hull, cover.
@article{INTO_2019_159_a0,
     author = {A. N. Abyzov and T. C. Quynh and A. A. Tuganbaev},
     title = {Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--45},
     publisher = {mathdoc},
     volume = {159},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_159_a0/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - T. C. Quynh
AU  - A. A. Tuganbaev
TI  - Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 45
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_159_a0/
LA  - ru
ID  - INTO_2019_159_a0
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A T. C. Quynh
%A A. A. Tuganbaev
%T Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-45
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_159_a0/
%G ru
%F INTO_2019_159_a0
A. N. Abyzov; T. C. Quynh; A. A. Tuganbaev. Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 159 (2019), pp. 3-45. http://geodesic.mathdoc.fr/item/INTO_2019_159_a0/

[1] Abyzov A. N., Kuin Ch. K., Tai D. D., “Dualno avtomorfizm-invariantnye moduli nad sovershennymi koltsami”, Sib. mat. zh., 58:5 (2017), 959–971 | MR | Zbl

[2] Govorov V. E., “Maloin'ektivnye moduli”, Algebra i logika, 2:6 (1963), 21–49 | MR

[3] Mishina A. P., “Ob avtomorfizmakh i endomorfizmakh abelevykh grupp”, Vestn. MGU. Ser. mat. mekh., 1972, no. 1, 62–66 | Zbl

[4] Tuganbaev A. A., “Stroenie modulei, blizkikh k in'ektivnym”, Sib. mat. zh., 18:4 (1977), 890–898 | MR | Zbl

[5] Tuganbaev A. A., “Kharakterizatsii kolets, ispolzuyuschie maloin'ektivnye i maloproektivnye moduli”, Vestn. MGU. Ser. mat. mekh., 1979, no. 3, 48–51 | Zbl

[6] Tuganbaev A. A., “O samoin'ektivnykh koltsakh”, Izv. vuzov. Mat., 1980, no. 12, 71–74 | Zbl

[7] Tuganbaev A. A., “Koltsa, nad kotorymi vse tsiklicheskie moduli maloin'ektivny”, Tr. semin. im. I. G. Petrovskogo, 6, 1981, 257–262 | Zbl

[8] Tuganbaev A. A., “Tselozamknutye koltsa”, Mat. sb., 115 (157):4 (8) (1981), 544–559 | MR | Zbl

[9] Tuganbaev A. A., “Maloin'ektivnye koltsa”, Izv. vuzov. Mat., 1981, no. 9, 50–53 | Zbl

[10] Tuganbaev A. A., “Maloin'ektivnye koltsa”, Usp. mat. nauk, 37:5 (1982), 201–202 | MR | Zbl

[11] Tuganbaev A. A., “Maloin'ektivnye moduli”, Mat. zametki, 31:3 (1982), 447–456 | MR | Zbl

[12] Tuganbaev A. A., “Koltsa s maloin'ektivnymi tsiklicheskimi modulyami”, Abelevy gruppy i moduli, TGU, Tomsk, 1986, 151–158

[13] Tuganbaev A. A., “Koltsa s maloin'ektivnymi faktor-koltsami”, Izv. vuzov. Mat., 1991, no. 1, 80–88 | Zbl

[14] Tuganbaev A. A., “Stroenie modulei nad nasledstvennymi koltsami”, Mat. zametki, 68:5 (2000), 739–755 | DOI | MR | Zbl

[15] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[16] Tuganbaev A. A., “Avtomorfizmy podmodulei i ikh prodolzhenie”, Diskr. mat., 25:1 (2013), 144–151 | DOI | Zbl

[17] Tuganbaev A. A., “Kharakteristicheskie podmoduli in'ektivnykh modulei”, Diskr. mat., 25:2 (2013), 85–90 | DOI | MR | Zbl

[18] Tuganbaev A. A., “Prodolzheniya avtomorfizmov podmodulei”, Fundam. prikl. mat., 18:3 (2013), 179–198 | MR

[19] Tuganbaev A. A., “Avtomorfizm-invariantnye moduli”, Fundam. prikl. mat., 18:4 (2013), 129–135 | MR

[20] Tuganbaev A. A., “Kharakteristicheskie podmoduli in'ektivnykh modulei nad strogo pervichnymi koltsami”, Diskr. mat., 26:3 (2014), 121–126 | DOI | Zbl

[21] Tuganbaev A. A., “Avtomorfizm-prodolzhaemye moduli”, Diskr. mat., 27:2 (2015), 106–111 | DOI | Zbl

[22] Tuganbaev A. A., “Avtomorfizm-prodolzhaemye i endomorfizm-prodolzhaemye moduli”, Fundam. prikl. mat., 21:4 (2016), 175–246 | MR

[23] Alahmadi A., Er N., Jain S. K., “Modules which are invariant under monomorphisms of their injective hulls”, J. Austr. Math. Soc., 79:3 (2005), 349–360 | DOI | MR | Zbl

[24] Birkenmeier G. F. Park J. K., Rizvi S. T., Extensions of Rings and Modules, Birkhäuser, New York; Springer, 2013 | MR | Zbl

[25] Camillo V. P., Khurana D., Lam T. Y., Nicholson W. K., Zhou Y., “Continuous modules are clean”, J. Algebra, 304:1 (2006), 94–111 | DOI | MR | Zbl

[26] Clark J., Lomp C., Vanaj N., Wisbauer R., Lifting Modules: Supplements and Projectivity in Module Theory, Birkhäuser, Basel, 2006 | MR | Zbl

[27] Dickson S. E., Fuller K. R., “Algebras for which every indecomposable right module is invariant in its injective envelope”, Pac. J. Math., 31:3 (1969), 655–658 | DOI | MR | Zbl

[28] Dinh H. Q., “A note on pseudo-injective modules”, Commun. Algebra, 33 (2005), 361–369 | DOI | MR | Zbl

[29] Dung N. V., Huynh D. V., Smith P. F., Wisbauer R., Extending Modules, Pitman Res. Notes Math., 313, Longman, 1994 | MR | Zbl

[30] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, Walter de Gruyter, Berlin, 2011 | MR

[31] Er N., Singh S., Srivastava A., “Rings and modules which are stable under automorphisms of their injective hulls”, J. Algebra, 379 (2013), 223–229 | DOI | MR | Zbl

[32] Facchini A., Module Theory. Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Birkhäuser, Basel, 1998 | MR | Zbl

[33] Goel V. K., Jain S. K., “$\pi$-Injective modules and rings whose cyclics are $\pi$-injective”, Commun. Algebra, 6 (1978), 59–72 | DOI | MR

[34] Guil Asensio P. A., Kalebogaz B., Srivastava A. K., “The Schroeder–Bernstein problem for modules”, J. Algebra, 498 (2018), 153–164 | DOI | MR | Zbl

[35] Guil Asensio P. A., Keskin D. T., Kalebogaz B., Srivastava A. K., “Modules which are coinvariant under automorphisms of their projective covers”, J. Algebra, 466:15 (2016), 147–152 | DOI | MR | Zbl

[36] Guil Asensio P. A., Srivastava A. K., “Automorphism-invariant modules, noncommutative rings and their applications”, Contemp. Math., 634, 2015, 19–30 | DOI | MR | Zbl

[37] Guil Asensio P. A., Srivastava A. K., “Automorphism-invariant modules satisfy the exchange property”, J. Algebra, 388 (2013), 101–106 | DOI | MR | Zbl

[38] Guil Asensio P. A., Srivastava A. K., Quynh T. C., “Additive unit structure of endomorphism rings and invariance of modules”, Bull. Math. Sci., 7:2 (2017), 229–246 | DOI | MR | Zbl

[39] Guil Asensio P. A., Keskin Tütüncü D., Srivastava A. K., “Modules invariant under automorphisms of their covers and envelopes”, Isr. J. Math., 206:1 (2015), 457–482 | DOI | MR | Zbl

[40] Hannah J., Meara K. C. O., “Products of idempotents in regular rings, II”, J. Algebra, 123 (1989), 223–239 | DOI | MR | Zbl

[41] Jain S. K., Srivastava A. K., Tuganbaev A. A., Cyclic modules and the structures of rings, Oxford Univ. Press, Oxford, 2012 | MR

[42] Jain S. K., Singh S., “On pseudo-injective modules and self pseudo injective rings”, J. Math. Sci., 2 (1967), 23–31 | MR | Zbl

[43] Jain S. K., Singh S., “Quasi-injective and pseudo-injective modules”, Can. Math. Bull., 18:3 (1975), 359–365 | DOI | MR

[44] Jeremy L., “Sur les modules et anneaux quasi-continus”, C. R. Acad. Sci. Paris, 273 (1971), 80–83 | MR | Zbl

[45] Jeremy L., “Modules et anneaux quasi-continus”, Can. Math. Bull., 17 (1974), 217–228 | DOI | MR | Zbl

[46] Johnson R. E., Wong E. T., “Quasi-injective modules and irreducible rings”, J. London Math. Soc., 36 (1961), 260–268 | DOI | MR | Zbl

[47] Kasch F., Modules and Rings, Academic Press, London, 1982 | MR | Zbl

[48] Koşan M. T., Quynh T. C., Srivastava A. K., “Rings with each right ideal automorphism-invariant”, J. Pure Appl. Algebra, 220:4 (2016), 1525–1537 | DOI | MR | Zbl

[49] Kuratomi K., Chang C., “Lifting modules over right perfect rings”, Commun. Algebra, 35:10 (2007), 3103–3109 | DOI | MR | Zbl

[50] Lee T. K., Zhou Y., “Modules which are invariant under automorphisms of their injective hulls”, J. Algebra Appl., 12:2 (2013), 1250159. | DOI | MR | Zbl

[51] Mohammed S. H., Müller B. J., Continuous and Discrete Modules, Cambridge Univ. Press, 1990 | MR

[52] Mohammed S., Bouhy T., “Continuous modules”, Arab. J. Sci. Eng., 2 (1977), 107–122 | MR

[53] Nicholson W. K., “Lifting idempotents and exchange rings”, Trans. Am. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[54] Nicholson W. K., Yousif M. F., Quasi-Frobenius Rings, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[55] von Neumann J., “Continuous geometry”, Proc. Natl. Acad. Sci., 22 (1936), 92–100 | DOI | MR

[56] von Neumann J., “Examples of continuous geometries”, Proc. Natl. Acad. Sci., 22 (1936), 101–108 | DOI

[57] von Neumann J., “On regular rings”, Proc. Natl. Acad. Sci., 22 (1936), 707–713 | DOI | Zbl

[58] Quynh T. C., Koşan M. T., “On automorphism-invariant modules”, J. Algebra Appl., 14:5 (2015), 1550074. | DOI | MR | Zbl

[59] Singh S., Srivastava A. K., “Rings of invariant module type and automorphism-invariant modules”, Contemp. Math., 609, 2014, 299–311 | DOI | MR | Zbl

[60] Singh S., Srivastava A. K., “Dual automorphism-invariant modules”, J. Algebra, 371 (2012), 262–275 | DOI | MR | Zbl

[61] Takeuchi T., “On direct modules”, Hokkaido Math. J., 1 (1972), 168–177 | DOI | MR | Zbl

[62] Thuyet L. V., Dan P., Quynh T. C., “Modules which are invariant under idempotents of their envelopes”, Colloq. Math., 143:2 (2016), 237–250 | MR | Zbl

[63] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer, Dordrecht–Boston–London, 1998 | MR | Zbl

[64] Tuganbaev A. A., “Rings over which all cyclic modules are completely integrally closed”, Discrete Math. Appl., 23:3 (2011), 477–497 | MR | Zbl

[65] Tuganbaev A. A., “Modules over strongly prime rings”, J. Algebra Appl., 14:5 (2015), 1550076 | DOI | MR | Zbl

[66] Tuganbaev A. A., “Automorphism-invariant semi-Artinian modules”, J. Algebra Appl., 16:1 (2017), 1750029 | DOI | MR | Zbl

[67] Tuganbaev A. A., “Automorphism-invariant non-singular rings and modules”, J. Algebra, 485 (2017), 247–253 | DOI | MR | Zbl

[68] Utumi Y., “On continuous regular rings and semisimple self-injective rings”, Can. J. Math., 12 (1960), 597–605 | DOI | MR | Zbl

[69] Utumi Y., “On continuous regular rings”, Can. Math. Bull., 4 (1961), 63–69 | DOI | MR | Zbl

[70] Utumi Y., “On continuous rings and self-injective rings”, Trans. Am. Math. Soc., 118 (1965), 158–173 | DOI | MR | Zbl

[71] Utumi Y., “On the continuity and self injectivity of a complete regular ring”, Can. J. Math., 18 (1966), 404–412 | DOI | MR | Zbl

[72] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl