Degree spectra of structures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 23-39

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we discuss computability spectra of countable structures that provide a natural measure of noncomputability of a structure. This notion is a main tool of investigating algorithmic properties of countable structures. Along with a review of known results in this field, we present proofs of some new results to illustrate the method of interpretation which is a basic method of the field. We also discuss some remaining open questions.
Mots-clés : structure
Keywords: computable structure, spectrum of a structure, interpretation.
@article{INTO_2018_158_a1,
     author = {I. Sh. Kalimullin and V. L. Selivanov and A. N. Frolov},
     title = {Degree spectra of structures},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {23--39},
     publisher = {mathdoc},
     volume = {158},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_158_a1/}
}
TY  - JOUR
AU  - I. Sh. Kalimullin
AU  - V. L. Selivanov
AU  - A. N. Frolov
TI  - Degree spectra of structures
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 23
EP  - 39
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_158_a1/
LA  - ru
ID  - INTO_2018_158_a1
ER  - 
%0 Journal Article
%A I. Sh. Kalimullin
%A V. L. Selivanov
%A A. N. Frolov
%T Degree spectra of structures
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 23-39
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_158_a1/
%G ru
%F INTO_2018_158_a1
I. Sh. Kalimullin; V. L. Selivanov; A. N. Frolov. Degree spectra of structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 23-39. http://geodesic.mathdoc.fr/item/INTO_2018_158_a1/