On homological classification of semirings
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present results on homological classification of semirings for recent ten years and certain new results.
Keywords: semiring, semimodule
Mots-clés : homological classification.
@article{INTO_2018_158_a0,
     author = {S. N. Il'in},
     title = {On homological classification of semirings},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {158},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_158_a0/}
}
TY  - JOUR
AU  - S. N. Il'in
TI  - On homological classification of semirings
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 22
VL  - 158
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_158_a0/
LA  - ru
ID  - INTO_2018_158_a0
ER  - 
%0 Journal Article
%A S. N. Il'in
%T On homological classification of semirings
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-22
%V 158
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_158_a0/
%G ru
%F INTO_2018_158_a0
S. N. Il'in. On homological classification of semirings. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 158 (2018), pp. 3-22. http://geodesic.mathdoc.fr/item/INTO_2018_158_a0/

[1] Ilin S. N., “Polukoltsa, nad kotorymi lyuboi polumodul in'ektiven (proektiven)”, Mat. vestn. pedvuzov i un-tov Volgo-Vyatsk. reg., 8 (2006), 50–53

[2] Ilin S. N., “O primenimosti k polukoltsam dvukh teorem teorii kolets i modulei”, Mat. zametki, 83:4 (2008), 536–544 | DOI | Zbl

[3] Ilin S. N., “Pryamye summy in'ektivnykh i pryamye proizvedeniya proektivnykh polumodulei nad polukoltsami”, Izv. vuzov. Mat., 2010, no. 10, 31–43 | Zbl

[4] Ilin S. N., “$V$-Polukoltsa”, Sib. mat. zh., 53:2 (2012), 277–290 | MR | Zbl

[5] Ilin S. N., “O polukoltsakh, udovletvoryayuschikh kriteriyu Bera”, Izv. vuzov. Mat., 2013, no. 3, 33–39 | MR | Zbl

[6] Ilin S. N., “O polukoltsakh, nad kotorymi vse prostye polumoduli proektivny”, Sib. mat. zh., 58:2 (2017), 281–297 | MR | Zbl

[7] Kash F., Moduli i koltsa, Mir, M., 1981

[8] Skornyakov L. A., Elementy obschei algebry, Nauka, M., 1983 | MR

[9] Tuganbaev A. A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[10] Feis K., Algebra: koltsa, moduli i kategorii. T. 1, 2, Mir, M., 1977, 1979 | MR

[11] Abuhlail J. Y., “Some remarks on tensor products and flatness of semimodules”, Semigroup Forum, 88:3 (2014), 732–738 | DOI | MR | Zbl

[12] Abuhlail J. Y., Il'in S. N., Katsov Y., Nam T. G., “On $V$-semirings and semirings all of whose cyclic semimodules are injective”, Commun. Algebra, 43:11 (2015), 4632–4654 | DOI | MR | Zbl

[13] Ahsan J., Shabir M., Weinert H. J., “Characterizations of semirings by $P$-injective and projective semimodules”, Commun. Algebra, 26:7 (1998), 2199–2209 | DOI | MR | Zbl

[14] Anderson F. W., Fuller K. R., Rings and categories of modules, Springer-Verlag, New York, 1992 | MR | Zbl

[15] Fofanova T. S., “Polygons over distributive lattices”, Colloq. Math. Soc. J. Bolyai, 29 (1982), 289–292 | MR | Zbl

[16] Golan J. S., Semirings and their applications, Kluwer, Dordrecht–Boston–London, 1999 | MR | Zbl

[17] Grätzer G., Universal algebra, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[18] Il'in S. N., Katsov Y., “On $p$-Schreier varieties of semimodules”, Commun. Algebra, 39:4 (2011), 1491–1501 | DOI | MR | Zbl

[19] Il'in S. N., Katsov Y., “On Serre's problem on projective semimodules over polynomial semirings”, Commun. Algebra, 42:9 (2014), 4021–4032 | DOI | MR | Zbl

[20] Il'in S. N., “On projective covers of semimodules and perfect semirings”, J. Algebra Appl., 13:6 (2014), 1450014 | DOI | MR | Zbl

[21] Il'in S. N., “On injective envelopes of semimodules over semirings”, J. Algebra Appl., 15:7 (2016), 1650122 | DOI | MR | Zbl

[22] Il'in S. N., Katsov Y., Nam T. G., “Toward homological structure theory of semimodules: On semirings all of whose cyclic semimodules are projective”, J. Algebra, 476 (2017), 238–266 | DOI | MR | Zbl

[23] Katsov Y., “Tensor products and injective envelopes of semimodules over additive regular semirings”, Algebra Colloq., 4:2 (1997), 121–131 | MR | Zbl

[24] Katsov Y., “On flat semimodules over semirings”, Algebra Univers., 51:2-3 (2004), 287–299 | DOI | MR | Zbl

[25] Katsov Y., “Toward homological classification of semirings: Serre's conjecture and Bass's perfectness in a semiring context”, Algebra Univers., 52:2-3 (2004), 197–214 | DOI | MR | Zbl

[26] Katsov Y., Nam T. G., “Morita equivalence and homological characterization of semirings”, J. Algebra Appl., 10:3 (2011), 445–473 | DOI | MR | Zbl

[27] Katsov Y., Nam T. G., Tuyen N. X., “More on subtractive semirings: simpleness, perfectness, and related problems”, Commun. Algebra, 39:11 (2011), 4342–4356 | DOI | MR | Zbl

[28] Kilp M., Knauer U., Mikhalev A. V., Monoids, acts and categories, Walter de Gruyter, Berlin–New York, 2000 | MR | Zbl

[29] Lam T. Y., Lectures on modules and rings, Springer-Verlag, New York–Berlin, 1999 | MR | Zbl

[30] Mac Lane S., Categories for the working mathematician, Springer-Verlag, New York, 1998 | MR | Zbl

[31] Patchkoria A., “Projective semimodules over semirings with valuations in nonnegative integers”, Semigroup Forum, 79:3 (2009), 451–460 | DOI | MR | Zbl

[32] Sokratova O., “On semimodules over commutative additively idempotent semirings”, Semigroup Forum, 64:1 (2002), 1–11 | DOI | MR | Zbl

[33] Sokratova O., “Projective semimodules”, Algebra Univers., 48:4 (2002), 389–398 | DOI | MR | Zbl

[34] Wang H., “Injective hulls of semimodules over additively-idempotent semirings”, Semigroup Forum, 48:1 (1994), 377–379 | DOI | MR | Zbl