Computable linear orders and limitwise monotonic functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 70-105
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we describe the technique of extremely monotonic functions in the theory of computable linear orders. The main definitions of extremely monotonic functions and their generalizations are given, as well as a number of their basic properties and applications.
Keywords:
computable linear orders, limitwise monotonic functions, effective presentations, low degrees, self-embeddings, automorphisms.
@article{INTO_2018_157_a4,
author = {M. V. Zubkov and A. N. Frolov},
title = {Computable linear orders and limitwise monotonic functions},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {70--105},
publisher = {mathdoc},
volume = {157},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_157_a4/}
}
TY - JOUR AU - M. V. Zubkov AU - A. N. Frolov TI - Computable linear orders and limitwise monotonic functions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 70 EP - 105 VL - 157 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_157_a4/ LA - ru ID - INTO_2018_157_a4 ER -
%0 Journal Article %A M. V. Zubkov %A A. N. Frolov %T Computable linear orders and limitwise monotonic functions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 70-105 %V 157 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_157_a4/ %G ru %F INTO_2018_157_a4
M. V. Zubkov; A. N. Frolov. Computable linear orders and limitwise monotonic functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 70-105. http://geodesic.mathdoc.fr/item/INTO_2018_157_a4/