Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_157_a3, author = {I. Sh. Kalimullin and M. Kh. Faizrakhmanov}, title = {Degrees of enumerations of countable {Wehner-like} families}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {59--69}, publisher = {mathdoc}, volume = {157}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_157_a3/} }
TY - JOUR AU - I. Sh. Kalimullin AU - M. Kh. Faizrakhmanov TI - Degrees of enumerations of countable Wehner-like families JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 59 EP - 69 VL - 157 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_157_a3/ LA - ru ID - INTO_2018_157_a3 ER -
%0 Journal Article %A I. Sh. Kalimullin %A M. Kh. Faizrakhmanov %T Degrees of enumerations of countable Wehner-like families %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 59-69 %V 157 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_157_a3/ %G ru %F INTO_2018_157_a3
I. Sh. Kalimullin; M. Kh. Faizrakhmanov. Degrees of enumerations of countable Wehner-like families. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 59-69. http://geodesic.mathdoc.fr/item/INTO_2018_157_a3/
[1] Kalimullin I. Sh., “Spektry stepenei nekotorykh algebraicheskikh struktur”, Algebra i logika, 46 (2007), 729–744 | Zbl
[2] Kalimullin I. Sh., “Pochti vychislimo perechislimye semeistva mnozhestv”, Mat. sb., 199 (2008), 33–40 | DOI | Zbl
[3] Kalimullin I. Sh., Kach A., Montalban A., Puzarenko V. G., Faizrakhmanov M. Kh., “Obraschenie skachka algebraicheskikh struktur i $\Sigma$-opredelimost”, Algebra i logika, 57:2 (2018), 243–249 | MR | Zbl
[4] Kalimullin I. Sh., Faizrakhmanov M. Kh., “Ierarkhiya klassov semeistv i $n$-nizkie stepeni”, Algebra i logika, 54 (2015), 536–541 | Zbl
[5] Andrews U., Cai M. Kalimullin I., Lempp S., Miller J., Montalbán A., “The complements of lower cones of degrees and the degree spectra of structures”, J. Symb. Logic, 81 (2016), 997–1006 | DOI | MR | Zbl
[6] Ash C. J., Knight J. F., “Computable structures and the hyperarithmetical hierarchy”, Stud. Logic Found. Math., 144 (2000) | MR
[7] Carstens H. G., “$\Delta_2^0$-Mmengen”, Arch. Math. Log. Grundlag., 18 (1978), 55–65 | DOI | MR
[8] Csima B. F., Kalimullin I. S., “Degree spectra and immunity properties”, Math. Log. Q., 56 (2010), 67–77 | DOI | MR | Zbl
[9] Diamondstone D., Greenberg N., Turetsky D., “Natural large degree spectra”, Computability, 2 (2013), 1–8 | DOI | MR | Zbl
[10] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $n$-families”, Math. Log. Q., 62 (2016), 420–426 | DOI | MR | Zbl
[11] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy and low$_\alpha$ segrees”, J. Univ. Comp. Sci., 22 (2016), 943–955 | MR
[12] Goncharov S., Harizanov V., Knight J., McCoy C., Miller R., Solomon R., “Enumerations in computable structure theory”, Ann. Pure Appl. Logic, 136 (2005), 219–246 | DOI | MR | Zbl
[13] Greenberg N., Montalbán A., Slaman T., “The Slaman–Wehner theorem in higher recursion theory”, Proc. Am. Math. Soc., 139 (2011), 1865–1869 | DOI | MR | Zbl
[14] Kalimullin I. Sh., “Some notes on degree spectra of structures”, Computation and logic in the real world, Lect. Notes Comp. Sci., 4497, eds. Cooper S. B., Löwe B., Sorbi A., Springer, 2007, 389–397 | DOI | MR | Zbl
[15] Nies A., “Lowness properties and randomness”, Adv. Math., 197 (2005), 274–305 | DOI | MR | Zbl
[16] Richter L., “Degrees of structures”, J. Symb. Logic, 46 (1981), 723–731 | DOI | MR | Zbl
[17] Wehner S., “Enumerations, countable structures, and Turing degrees”, Proc. Am. Math. Soc., 126 (1998), 2131–2139 | DOI | MR | Zbl