Categoricity spectra of computable structures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 42-58

Voir la notice de l'article provenant de la source Math-Net.Ru

The categoricity spectrum of a computable structure $S$ is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable presentations of $S$. The degree of categoricity of $S$ is the least degree in the categoricity spectrum of $S$. The paper gives a survey of results on categoricity spectra and degrees of categoricity for computable structures. We focus on the results about degrees of categoricity for linear orders and Boolean algebras. We build a new series of examples of degrees of categoricity for linear orders.
Keywords: computable categoricity, categoricity spectrum, degree of categoricity, computable structure, linear order, Boolean algebra, decidable categoricity, autostability, autostability relative to strong constructivizations, index set.
@article{INTO_2018_157_a2,
     author = {N. A. Bazhenov},
     title = {Categoricity spectra of computable structures},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--58},
     publisher = {mathdoc},
     volume = {157},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/}
}
TY  - JOUR
AU  - N. A. Bazhenov
TI  - Categoricity spectra of computable structures
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 42
EP  - 58
VL  - 157
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/
LA  - ru
ID  - INTO_2018_157_a2
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%T Categoricity spectra of computable structures
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 42-58
%V 157
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/
%G ru
%F INTO_2018_157_a2
N. A. Bazhenov. Categoricity spectra of computable structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 42-58. http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/