Categoricity spectra of computable structures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 42-58
Voir la notice de l'article provenant de la source Math-Net.Ru
The categoricity spectrum of a computable structure $S$ is the set of all Turing degrees capable of computing isomorphisms among arbitrary computable presentations of $S$. The degree of categoricity of $S$ is the least degree in the categoricity spectrum of $S$. The paper gives a survey of results on categoricity spectra and degrees of categoricity for computable structures. We focus on the results about degrees of categoricity for linear orders and Boolean algebras. We build a new series of examples of degrees of categoricity for linear orders.
Keywords:
computable categoricity, categoricity spectrum, degree of categoricity, computable structure, linear order, Boolean algebra, decidable categoricity, autostability, autostability relative to strong constructivizations, index set.
@article{INTO_2018_157_a2,
author = {N. A. Bazhenov},
title = {Categoricity spectra of computable structures},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {42--58},
publisher = {mathdoc},
volume = {157},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/}
}
TY - JOUR AU - N. A. Bazhenov TI - Categoricity spectra of computable structures JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 42 EP - 58 VL - 157 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/ LA - ru ID - INTO_2018_157_a2 ER -
N. A. Bazhenov. Categoricity spectra of computable structures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 42-58. http://geodesic.mathdoc.fr/item/INTO_2018_157_a2/