Turing computability: structural theory
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 8-41
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we review results of the last years related to the development of the structural theory of $n$-c.e. Turing degrees for $n>1$. We also discuss possible approaches to solution of the open problems.
Keywords:
computably enumerable set, Turing degree, Ershov's hierarchy, definability.
@article{INTO_2018_157_a1,
author = {M. M. Arslanov and M. M. Yamaleev},
title = {Turing computability: structural theory},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {8--41},
publisher = {mathdoc},
volume = {157},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_157_a1/}
}
TY - JOUR AU - M. M. Arslanov AU - M. M. Yamaleev TI - Turing computability: structural theory JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 8 EP - 41 VL - 157 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_157_a1/ LA - ru ID - INTO_2018_157_a1 ER -
M. M. Arslanov; M. M. Yamaleev. Turing computability: structural theory. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Seminar on Algebra and Mathematical Logic of the Kazan (Volga Region) Federal University, Tome 157 (2018), pp. 8-41. http://geodesic.mathdoc.fr/item/INTO_2018_157_a1/