Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_156_a9, author = {T. K. Yuldashev and K. H. Shabadikov}, title = {Initial-value problem for a higher-order partial quasilinear differential equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {106--116}, publisher = {mathdoc}, volume = {156}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/} }
TY - JOUR AU - T. K. Yuldashev AU - K. H. Shabadikov TI - Initial-value problem for a higher-order partial quasilinear differential equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 106 EP - 116 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/ LA - ru ID - INTO_2018_156_a9 ER -
%0 Journal Article %A T. K. Yuldashev %A K. H. Shabadikov %T Initial-value problem for a higher-order partial quasilinear differential equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 106-116 %V 156 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/ %G ru %F INTO_2018_156_a9
T. K. Yuldashev; K. H. Shabadikov. Initial-value problem for a higher-order partial quasilinear differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 106-116. http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/
[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006
[2] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999
[3] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl
[4] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477
[5] Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 2017, no. 8, 27–41 | Zbl
[6] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | DOI | MR | Zbl
[7] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl
[8] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973
[9] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl
[10] Yuldashev T. K., “Ob obratnoi zadache dlya kvazilineinogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestn. Tomsk. un-ta. Mat. Mekh., 2012, no. 2, 56–62
[11] Yuldashev T. K., “Ob obratnoi zadache dlya sistemy kvazilineinykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. Mekh. Fiz., 6:11 (270) (2012), 35–41 | Zbl
[12] Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta tam. inform. Udmurt. un-ta, 50 (2017), 121–132 | Zbl
[13] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obzory, 140, VINITI RAN, M., 2017, 43–49 | MR