Initial-value problem for a higher-order partial quasilinear differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 106-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine an initial-value problem for a certain higher-order partial quasilinear differential equation. Expressing the partial differential operator as the superposition of first-order operator, we apply methods of solution of first-order equations. We prove the unique solvability of the initial-value problem considered.
Keywords: initial-value problem, characteristics, directional derivative, superposition of differential operators, unique solvability.
@article{INTO_2018_156_a9,
     author = {T. K. Yuldashev and K. H. Shabadikov},
     title = {Initial-value problem for a higher-order partial quasilinear differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {106--116},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - K. H. Shabadikov
TI  - Initial-value problem for a higher-order partial quasilinear differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 106
EP  - 116
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/
LA  - ru
ID  - INTO_2018_156_a9
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A K. H. Shabadikov
%T Initial-value problem for a higher-order partial quasilinear differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 106-116
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/
%G ru
%F INTO_2018_156_a9
T. K. Yuldashev; K. H. Shabadikov. Initial-value problem for a higher-order partial quasilinear differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 106-116. http://geodesic.mathdoc.fr/item/INTO_2018_156_a9/

[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[2] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999

[3] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl

[4] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477

[5] Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 2017, no. 8, 27–41 | Zbl

[6] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | DOI | MR | Zbl

[7] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl

[8] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973

[9] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[10] Yuldashev T. K., “Ob obratnoi zadache dlya kvazilineinogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestn. Tomsk. un-ta. Mat. Mekh., 2012, no. 2, 56–62

[11] Yuldashev T. K., “Ob obratnoi zadache dlya sistemy kvazilineinykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. Mekh. Fiz., 6:11 (270) (2012), 35–41 | Zbl

[12] Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta tam. inform. Udmurt. un-ta, 50 (2017), 121–132 | Zbl

[13] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obzory, 140, VINITI RAN, M., 2017, 43–49 | MR