Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 89-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Fourier method of separation of variables, we examine the classical solvability and construct solutions of a nonlocal inverse boundary-value problem for the fourth-order Benney–Luke integro-differential equation with degenerate kernel. We prove the criterion of the unique solvability of the inverse boundary-value problem and examine the stability of solutions with respect to the recovery function.
Keywords: integro-differential equation, Benney–Luke equation, fourth-order equation, degenerate kernel, integral condition, classical solvability.
@article{INTO_2018_156_a7,
     author = {T. K. Yuldashev},
     title = {Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the {Benney--Luke} integro-differential equation with degenerate kernel},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 89
EP  - 102
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/
LA  - ru
ID  - INTO_2018_156_a7
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 89-102
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/
%G ru
%F INTO_2018_156_a7
T. K. Yuldashev. Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 89-102. http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/

[1] Amanov D., Murzambetova M. B., “Kraevaya zadacha dlya uravneniya chetvertogo poryadka s mladshim chlenom”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki, 2013, no. 1, 3–10 | Zbl

[2] Akhtyamov A. M., Ayupova A. R., “O reshenii zadachi diagnostirovaniya defektov v vide maloi polosti v sterzhne”, Zh. Srednevolzh. mat. o-va, 12:3 (2010), 37–42

[3] Baev A. D., Shabrov S. A., Mon Mean., “O edinstvennosti resheniya matematicheskoi modeli vynuzhdennykh kolebanii struny s osobennostyami”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2014, no. 1, 50–55 | MR

[4] Buryachenko E. A., “O razmernosti yadra zadachi Dirikhle dlya uravnenii chetvertogo poryadka”, Differ. uravn., 51:4 (2015), 472–480 | DOI | MR | Zbl

[5] Kirichenko S. V., “Ob odnoi nelokalnoi zadache dlya uravneniya chetvertogo poryadka s dominiruyuschei smeshannoi proizvodnoi”, Vestn. Samar. un-ta. Estestvennonauch. ser., 2017, no. 2, 26–31 | Zbl

[6] Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s singulyarnoi tochkoi v yadre”, Vestn. Tomsk. un-ta. Mat. mekh., 2017, no. 46, 24–36

[7] Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s logarifmicheskoi osobennostyu v yadre”, Vestn. Samar. tekhn. un-ta. Ser. fiz.-mat. nauki, 21:2 (2017), 236–248 | MR | Zbl

[8] Mamedov I. G., “Fundamentalnoe reshenie nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya chetvertogo poryadka s negladkimi koeffitsientami”, Vladikavkaz. mat. zh., 12:1 (2010), 17–32 | MR | Zbl

[9] Pirov R., “Ob odnom sposobe issledovaniya resheniya sistem uravnenii v chastnykh proizvodnykh, voznikayuschei v trekhmernoi teorii polya”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2015, no. 4, 175–180 | Zbl

[10] Safarov Zh. Sh., “Otsenki ustoichivosti reshenii nekotorykh obratnykh zadach dlya integro-differentsialnykh uravnenii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki, 2014, no. 3, 75–82 | Zbl

[11] Smirnov M. M., Modelnye uravneniya smeshannogo tipa chetvertogo poryadka, LGU, L., 1972

[12] Smirnov Yu. G., Tsupak A. A., “O fredgolmosti uravneniya elektricheskogo polya v vektornoi zadache difraktsii na ob'emnom chastichno ekranirovannom tele”, Differ. uravn., 52:9 (2016), 1242–1251 | DOI | Zbl

[13] Turbin M. V., “Issledovanie nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Gershel—Balkli”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2013, no. 2, 246–257

[14] Shabrov S. A., “Ob otsenkakh funktsii vliyaniya odnoi matematicheskoi modeli chetvertogo poryadka”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2015, no. 2, 168–179 | Zbl

[15] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[16] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl

[17] Yuldashev T. K., “Ob odnom smeshannom differentsialnom uravnenii chetvertogo poryadka”, Izv. in-ta mat. i inform. Udmurt. un-ta, 2016, no. 1 (47), 119–128 | Zbl

[18] Yuldashev T. K., “Obratnaya zadacha dlya odnogo nelineinogo integro-differentsialnogo uravneniya tretego poryadka”, Vestn. Samar. un-ta. Estestvennonauch. ser., 2013, no. 1, 58–66 | Zbl

[19] Yuldashev T. K., “Obratnaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s giperbolicheskim operatorom vysokoi stepeni”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. Mekh. Fiz., 5:1 (2013), 69–75 | Zbl

[20] Yuldashev T. K., “Obratnaya zadacha dlya integro-differentsialnogo uravneniya Fredgolma tretego poryadka s vyrozhdennym yadrom”, Vladikavkaz. mat. zh., 18:2 (2016), 76–85 | MR

[21] Yuldashev T. K., Seredkina A. I., “Obratnaya zadacha dlya kvazilineinykh integro-differentsialnykh uravnenii v chastnykh proizvodnykh vysokogo poryadka”, Vestn. Samar. un-ta. Ser. fiz.-mat. nauki, 32:3 (2013), 46–55 | Zbl

[22] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl