Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_156_a7, author = {T. K. Yuldashev}, title = {Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the {Benney--Luke} integro-differential equation with degenerate kernel}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {89--102}, publisher = {mathdoc}, volume = {156}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/} }
TY - JOUR AU - T. K. Yuldashev TI - Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 89 EP - 102 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/ LA - ru ID - INTO_2018_156_a7 ER -
%0 Journal Article %A T. K. Yuldashev %T Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 89-102 %V 156 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/ %G ru %F INTO_2018_156_a7
T. K. Yuldashev. Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney--Luke integro-differential equation with degenerate kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 89-102. http://geodesic.mathdoc.fr/item/INTO_2018_156_a7/
[1] Amanov D., Murzambetova M. B., “Kraevaya zadacha dlya uravneniya chetvertogo poryadka s mladshim chlenom”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki, 2013, no. 1, 3–10 | Zbl
[2] Akhtyamov A. M., Ayupova A. R., “O reshenii zadachi diagnostirovaniya defektov v vide maloi polosti v sterzhne”, Zh. Srednevolzh. mat. o-va, 12:3 (2010), 37–42
[3] Baev A. D., Shabrov S. A., Mon Mean., “O edinstvennosti resheniya matematicheskoi modeli vynuzhdennykh kolebanii struny s osobennostyami”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2014, no. 1, 50–55 | MR
[4] Buryachenko E. A., “O razmernosti yadra zadachi Dirikhle dlya uravnenii chetvertogo poryadka”, Differ. uravn., 51:4 (2015), 472–480 | DOI | MR | Zbl
[5] Kirichenko S. V., “Ob odnoi nelokalnoi zadache dlya uravneniya chetvertogo poryadka s dominiruyuschei smeshannoi proizvodnoi”, Vestn. Samar. un-ta. Estestvennonauch. ser., 2017, no. 2, 26–31 | Zbl
[6] Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s singulyarnoi tochkoi v yadre”, Vestn. Tomsk. un-ta. Mat. mekh., 2017, no. 46, 24–36
[7] Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s logarifmicheskoi osobennostyu v yadre”, Vestn. Samar. tekhn. un-ta. Ser. fiz.-mat. nauki, 21:2 (2017), 236–248 | MR | Zbl
[8] Mamedov I. G., “Fundamentalnoe reshenie nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya chetvertogo poryadka s negladkimi koeffitsientami”, Vladikavkaz. mat. zh., 12:1 (2010), 17–32 | MR | Zbl
[9] Pirov R., “Ob odnom sposobe issledovaniya resheniya sistem uravnenii v chastnykh proizvodnykh, voznikayuschei v trekhmernoi teorii polya”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2015, no. 4, 175–180 | Zbl
[10] Safarov Zh. Sh., “Otsenki ustoichivosti reshenii nekotorykh obratnykh zadach dlya integro-differentsialnykh uravnenii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki, 2014, no. 3, 75–82 | Zbl
[11] Smirnov M. M., Modelnye uravneniya smeshannogo tipa chetvertogo poryadka, LGU, L., 1972
[12] Smirnov Yu. G., Tsupak A. A., “O fredgolmosti uravneniya elektricheskogo polya v vektornoi zadache difraktsii na ob'emnom chastichno ekranirovannom tele”, Differ. uravn., 52:9 (2016), 1242–1251 | DOI | Zbl
[13] Turbin M. V., “Issledovanie nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Gershel—Balkli”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2013, no. 2, 246–257
[14] Shabrov S. A., “Ob otsenkakh funktsii vliyaniya odnoi matematicheskoi modeli chetvertogo poryadka”, Vestn. Voronezh. un-ta. Ser. fiz. mat., 2015, no. 2, 168–179 | Zbl
[15] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977
[16] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo differentsialnogo uravneniya chetvertogo poryadka s malym parametrom pri parabolicheskom operatore”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1703–1711 | MR | Zbl
[17] Yuldashev T. K., “Ob odnom smeshannom differentsialnom uravnenii chetvertogo poryadka”, Izv. in-ta mat. i inform. Udmurt. un-ta, 2016, no. 1 (47), 119–128 | Zbl
[18] Yuldashev T. K., “Obratnaya zadacha dlya odnogo nelineinogo integro-differentsialnogo uravneniya tretego poryadka”, Vestn. Samar. un-ta. Estestvennonauch. ser., 2013, no. 1, 58–66 | Zbl
[19] Yuldashev T. K., “Obratnaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s giperbolicheskim operatorom vysokoi stepeni”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. Mekh. Fiz., 5:1 (2013), 69–75 | Zbl
[20] Yuldashev T. K., “Obratnaya zadacha dlya integro-differentsialnogo uravneniya Fredgolma tretego poryadka s vyrozhdennym yadrom”, Vladikavkaz. mat. zh., 18:2 (2016), 76–85 | MR
[21] Yuldashev T. K., Seredkina A. I., “Obratnaya zadacha dlya kvazilineinykh integro-differentsialnykh uravnenii v chastnykh proizvodnykh vysokogo poryadka”, Vestn. Samar. un-ta. Ser. fiz.-mat. nauki, 32:3 (2013), 46–55 | Zbl
[22] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl