Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_156_a6, author = {D. A. Tursunov and K. G. Kozhobekov}, title = {Asymptotic solution of a singularly perturbed {Cauchy} problem with a turning point}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {84--88}, publisher = {mathdoc}, volume = {156}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/} }
TY - JOUR AU - D. A. Tursunov AU - K. G. Kozhobekov TI - Asymptotic solution of a singularly perturbed Cauchy problem with a turning point JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 84 EP - 88 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/ LA - ru ID - INTO_2018_156_a6 ER -
%0 Journal Article %A D. A. Tursunov %A K. G. Kozhobekov %T Asymptotic solution of a singularly perturbed Cauchy problem with a turning point %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 84-88 %V 156 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/ %G ru %F INTO_2018_156_a6
D. A. Tursunov; K. G. Kozhobekov. Asymptotic solution of a singularly perturbed Cauchy problem with a turning point. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 84-88. http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/
[1] \label{D1} Alymkulov K., Tursunov D. A., “Ob odnom metode postroeniya asimptoticheskikh razlozhenii reshenii bisingulyarno vozmuschennykh zadach”, Izv. vuzov. Mat., 2016, no. 12, 3–11 | Zbl
[2] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001 | MR
[3] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraveykh zadach, Nauka, M., 1989
[4] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981
[5] \label{D2} Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s tremya tochkami povorota”, Tr. IMM UrO RAN, 22:1 (2016), 271–281 | MR
[6] \label{D3} Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka s dvumya tochkami povorota”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 2013, no. 1 (21), 34–40
[7] Tursunov D. A., “Asimptoticheskoe reshenie bisingulyarnoi zadachi Robena”, Sib. elektr. mat. izv., 14 (2017), 10–21 | MR | Zbl
[8] Kevorkian J., Cole J. D., Perturbation methods in applied mathematics, Springer-Verlag, 1968 | MR
[9] Olver F. M., “Connection formulas for second-order differential equations with multiple turning points”, SIAM J. Math. Anal., 1:8 (1977), 127–154 | DOI | MR
[10] Olver F. M., “Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities”, SIAM J. Math. Anal., 4:8 (1977), 673–700 | DOI | MR
[11] Van Dyke M., Perturbation methods in fluid dynamics, Academic Press, New York, 1964 | MR
[12] Wasow W., Asymptotic expansions for ordinary differential equations, Dover, New York, 1965 | MR
[13] Wasow W., Linear turning point theory, Springer-Verlag, New York, 1985 | MR | Zbl
[14] Watts A. M., “A singular perturbation problem with a turning point”, Bull. Austr. Math. Soc., 5 (1971), 61–73 | DOI | MR | Zbl
[15] Wong R., Selected papers of F. W. J. Olver, World Scientific, 2000 | MR | Zbl