Asymptotic solution of a singularly perturbed Cauchy problem with a turning point
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 84-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a modified method of boundary-layer functions, we construct a complete uniform asymptotic solution to the singularly perturbed Cauchy problem for a second-order linear inhomogeneous ordinary differential equation with a multiple turning point on the real axis.
Keywords: asymptotics, boundary-layer function, Cauchy problem, bisingular problem, turning point, generalized method of boundary-layer functions, singular perturbation.
@article{INTO_2018_156_a6,
     author = {D. A. Tursunov and K. G. Kozhobekov},
     title = {Asymptotic solution of a singularly perturbed {Cauchy} problem with a turning point},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - K. G. Kozhobekov
TI  - Asymptotic solution of a singularly perturbed Cauchy problem with a turning point
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 84
EP  - 88
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/
LA  - ru
ID  - INTO_2018_156_a6
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A K. G. Kozhobekov
%T Asymptotic solution of a singularly perturbed Cauchy problem with a turning point
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 84-88
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/
%G ru
%F INTO_2018_156_a6
D. A. Tursunov; K. G. Kozhobekov. Asymptotic solution of a singularly perturbed Cauchy problem with a turning point. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 84-88. http://geodesic.mathdoc.fr/item/INTO_2018_156_a6/