On the Cauchy problem for a one-dimensional loaded parabolic equation of a special form
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 58-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a loaded parabolic equation of a special form in an unbounded domain with Cauchy data. The equation is one-dimensional and its right-hand side depends on the unknown function $u(t,x)$ and traces of this function and its derivatives by the spatial variable at a finite number of different points of space. Such equation appear after the reduction of some identification problems for coefficients of one-dimensional parabolic equations with Cauchy data to auxiliary direct problems. We obtain sufficient conditions of the global solvability and sufficient conditions of the solvability of the problem considered in a small time interval. We search for solutions in the class of sufficiently smooth bounded functions. We examine the uniqueness of the classical solution found and prove the corresponding sufficient conditions. We also obtain an a priori estimate of a solution that guarantees the continuous dependence of the solution on the right-hand side of the equation and the initial conditions.
Mots-clés : arabolic equation
Keywords: loaded equation, Cauchy problem, solvability, method of weak approximation, uniqueness of solution, continuous dependence.
@article{INTO_2018_156_a4,
     author = {I. V. Frolenkov and M. A. Yarovaya},
     title = {On the {Cauchy} problem for a one-dimensional loaded parabolic equation of a special form},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {58--72},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a4/}
}
TY  - JOUR
AU  - I. V. Frolenkov
AU  - M. A. Yarovaya
TI  - On the Cauchy problem for a one-dimensional loaded parabolic equation of a special form
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 58
EP  - 72
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a4/
LA  - ru
ID  - INTO_2018_156_a4
ER  - 
%0 Journal Article
%A I. V. Frolenkov
%A M. A. Yarovaya
%T On the Cauchy problem for a one-dimensional loaded parabolic equation of a special form
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 58-72
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a4/
%G ru
%F INTO_2018_156_a4
I. V. Frolenkov; M. A. Yarovaya. On the Cauchy problem for a one-dimensional loaded parabolic equation of a special form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 58-72. http://geodesic.mathdoc.fr/item/INTO_2018_156_a4/

[1] Belov Yu. Ya., Kantor S. A., Metod slaboi approksimatsii, Krasnoyarsk, 1999

[2] Belov Yu. Ya., Frolenkov I. V. i dr., Neklassicheskie i obratnye kraevye zadachi, Sib. fed. un-t, Krasnoyarsk, 2007

[3] Kozhanov A. I., “Parabolicheskie uravneniya s neizvestnymi koeffitsientami, zavisyaschimi ot vremeni”, Zh. vychisl. mat. mat. fiz., 57:6 (2017), 961–972 | DOI | Zbl

[4] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976

[5] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[6] Pontryagin, L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982

[7] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR

[8] Frolenkov I. V., Nekotorye zadachi identifikatsii koeffitsientov polulineinykh parabolicheskikh uravnenii, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Krasnoyarsk, 2007

[9] Frolenkov I. V., Belov Yu. Ya., “O suschestvovanii resheniya dlya klassa nagruzhennykh dvumernykh parabolicheskikh uravnenii s dannymi Koshi”, Neklassicheskie uravneniya matematicheskoi fiziki, In-t mat., Novosibirsk, 2012, 262–279

[10] Frolenkov I. V., Darzhaa M. A., “On the existence of some problems for nonlinear loaded parabolic equations with Cauchy data”, Zh. Sib. un-ta. Ser. mat. fiz., 7:2 (2014), 173–185 | MR