On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 41-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the solvability of a new class of nonclassical direct problems for multidimensional loaded parabolic equations with Cauchy data. We obtain sufficient conditions for the solvability of the problem; the proof is based on the method of weak approximation. By an example, we demonstrate the application of the theorem proved to the study of inverse problems for multidimensional parabolic equations with Cauchy data.
Mots-clés : parabolic equation
Keywords: loaded equation, Cauchy problem, solvability, method of weak approximation.
@article{INTO_2018_156_a3,
     author = {I. V. Frolenkov and E. N. Kriger},
     title = {On the solvability of the {Cauchy} problem for a certain class of multidimensional loaded parabolic equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--57},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a3/}
}
TY  - JOUR
AU  - I. V. Frolenkov
AU  - E. N. Kriger
TI  - On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 41
EP  - 57
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a3/
LA  - ru
ID  - INTO_2018_156_a3
ER  - 
%0 Journal Article
%A I. V. Frolenkov
%A E. N. Kriger
%T On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 41-57
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a3/
%G ru
%F INTO_2018_156_a3
I. V. Frolenkov; E. N. Kriger. On the solvability of the Cauchy problem for a certain class of multidimensional loaded parabolic equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 41-57. http://geodesic.mathdoc.fr/item/INTO_2018_156_a3/

[1] Abdullaev V. M., Aida-zade K. R., “Konechnoraznostnye metody resheniya nagruzhennykh parabolicheskikh uravnenii”, Zh. vychisl. mat. mat. fiz., 56:1 (2016), 99–112

[2] Belov Yu. Ya., Frolenkov I. V., “Nekotorye zadachi identifikatsii koeffitsientov polulineinykh parabolicheskikh uravnenii”, Dokl. RAN, 404:5 (2005), 583–585 | MR | Zbl

[3] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Almaty, 2010

[4] Kozhanov A. I., “Ob odnom nelineinom nagruzhennom parabolicheskom uravnenii i o svyazannoi s nim obratnoi zadache”, Mat. zametki, 76:6 (2004), 840–853 | DOI | Zbl

[5] Kozhanov A. I., “O razreshimosti nekotorykh nelokalnykh i svyazannykh s nimi obratnykh zadach dlya parabolicheskikh uravnenii”, Mat. zametki YaGU, 18:2 (2011), 64–78 | Zbl

[6] Kozhanov A. I., “Parabolicheskie uravneniya s neizvestnymi koeffitsientami, zavisyaschimi ot vremeni”, Zh. vychisl. mat. mat. fiz., 57:6 (2017), 961–972 | DOI | Zbl

[7] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[8] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982

[9] Tarasenko A. V., “Ob odnoi zadache s operatorom M. Saigo v kraevom uslovii dlya nagruzhennogo uravneniya teploprovodnosti”, Vestn. Samar. gos. tekhn. un-ta. Ser. fiz.-mat. nauki, 28:3 (2012), 41–46 | DOI | Zbl

[10] Frolenkov I. V., Belov Yu. Ya., “O suschestvovanii resheniya dlya klassa nagruzhennykh dvumernykh parabolicheskikh uravnenii s dannymi Koshi”, Neklassicheskie uravneniya matematicheskoi fiziki, In-t mat., Novosibirsk, 2012, 262–279

[11] Frolenkov I. V., Romanenko G. V., “O razreshimosti spetsialnykh sistem odnomernykh nagruzhennykh parabolicheskikh uravnenii i sistem sostavnogo tipa s dannymi Koshi”, Sib. zh. industr. mat., 17:1 (2014), 135–148 | MR | Zbl

[12] Shkhanukov-Lafishev M. Kh., “Lokalno-odnomernaya skhema dlya nagruzhennogo uravneniya teploprovodnosti s kraevymi usloviyami III roda”, Zh. vychisl. mat. mat. fiz., 49:7 (2009), 1223–1231 | MR | Zbl

[13] Belov Yu. Ya., Inverse problems for partial differential equations, VSP, Utrecht, 2002 | MR | Zbl

[14] Belov Yu. Ya., Korshun K. V., “On solvability of the Cauchy problem for a loaded system”, Zh. Sib. un-ta. Ser. mat. fiz., 7:2 (2014), 155–161

[15] Dzhenaliev M. T., Ramazanov M. I., “On a boundary-value problem for a spectrally loaded heat operator: I”, Differ. Equations, 43:4 (2007), 513–524 | MR | Zbl

[16] Frolenkov I. V., Darzhaa M. A., “On the existence of some problems for nonlinear loaded parabolic equations with Cauchy data”, Zh. Sib. un-ta. Ser. mat. fiz., 7:2 (2014), 173–185 | MR

[17] Romanenko G. V., Frolenkov I. V., “On the solvability of a system of two multidimensional loaded parabolic equations with the Cauchy data”, Zh. Sib. un-ta. Ser. mat. fiz., 9:3 (2016), 364–373