Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_156_a2, author = {A. K. Urinov and K. T. Karimov}, title = {Dirichlet problem for an elliptic equation with three singular coefficients}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {30--40}, publisher = {mathdoc}, volume = {156}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a2/} }
TY - JOUR AU - A. K. Urinov AU - K. T. Karimov TI - Dirichlet problem for an elliptic equation with three singular coefficients JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 30 EP - 40 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_156_a2/ LA - ru ID - INTO_2018_156_a2 ER -
%0 Journal Article %A A. K. Urinov %A K. T. Karimov %T Dirichlet problem for an elliptic equation with three singular coefficients %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 30-40 %V 156 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_156_a2/ %G ru %F INTO_2018_156_a2
A. K. Urinov; K. T. Karimov. Dirichlet problem for an elliptic equation with three singular coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 30-40. http://geodesic.mathdoc.fr/item/INTO_2018_156_a2/
[1] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981
[2] Vatson G. N., Teoriya besselevykh funktsii, v. 1, IL, M., 1949
[3] Karimov K. T., “Zadacha Dirikhle dlya trekhmernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Uzb. mat. zh., 2017, no. 1, 96–105
[4] Kuznetsov D. S., Spetsialnye funktsii, Vysshaya shkola, M., 1962
[5] Nazipov I. T., “Reshenie space'ennoi zadachi Trikomi dlya singulyarnogo uravneniya smeshannogo tipa metodom integralnykh uravnenii”, Izv. vuzov. Mat., 2011, no. 3, 69–85 | MR | Zbl
[6] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Mir, M., 1986
[7] Salakhitdinov M. S., Mirsaburov M., Nelokalnye zadachi dlya uravnenii smeshannogo tipa s singulyarnymi koeffitsientami, Tashkent, 2005
[8] Salakhitdinov M. S., Urinov A. K., K spektralnoi teorii uravnenii smeshannogo tipa, Tashkent, 2010
[9] Serbina L. I., “Ob odnoi probleme dlya linearizovannogo uravneniya Bussineska s nelokalnym usloviem Samarskogo”, Differ. uravn., 38:8 (2002), 1113–1119 | MR | Zbl
[10] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966
[11] Urinov A. K., Karimov K. T., “Zadacha Dirikhle—Neimana dlya trekhmernogo ellipticheskogo uravneniya s dvumya singulyarnymi koeffitsientami”, Vestn. Nats. un-ta Uzbekistana. Ser. Mat. Mekh. Fiz. Inform., 2/1 (2017), 195–206
[12] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya. T. 2, Nauka, M., 1969
[13] Khiiirbekov T. E., “Reshenie zadachi $T_3^+$ dlya odnogo trekhmernogo uravneniya v proizvolnoi oblasti”, Volzh. mat. sb., 1971, no. 8, 215–220
[14] Khiiirbekov T. E., “Reshenie zadachi $N$ dlya odnogo $n$-mernogo uravneniya v normalnoi oblasti”, Volzh. mat. sb., 1971, no. 8, 221–226
[15] Bers L., Mathematical aspects of subsonic and transonic gas dynamics, New York–London, 1958 | MR | Zbl
[16] Gilbert R., Function theoretic methods in partial differential equations, Academic Press, New York–London, 1969 | MR | Zbl
[17] Karimov E. T., “On a boundary problem with Neumann's condition for 3D singular elliptic equations”, Appl. Math. Lett., 23 (2010), 517–522 | DOI | MR | Zbl
[18] Karimov E. T., Nieto J. J., “The Dirichlet problem for a 3D elliptic equation with two singular coefficients”, Comput. Math. Appl., 62 (2011), 214–224 | DOI | MR | Zbl
[19] Nieto J. J., Karimov E. T., “On an analogue of the Holmgren’s problem for 3d singular elliptic equation”, Asian-Europ. J. Math., 5:2 (2012), 1250021 | DOI | MR | Zbl
[20] Salakhitdinov M. S., Karimov E. T., “Spatial boundary problem with the Dirichlet–Neumann condition for a singular elliptic equation”, Appl. Math. Comput., 219 (2012), 3469–3476 | MR | Zbl