Integro-differential equation with a higher-order two-dimensional Whitham operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 117-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the unique solvability of an initial-value problem for a certain higher-order quasilinear partial integro-differential equation with degenerate kernel. Expressing the higher-order partial integro-differential operators as the superposition of first-order partial differential operators, we represent the integro-differential equation considered as an ordinary integro-differential equations that describes the change of the unknown function along characteristics. Using the method of successive approximations, we prove the unique solvability of the initial-value problem and obtain an estimate for the convergence rate of the Picard iterative process.
Keywords: initial-value problem, characteristics, directional derivative, method of successive approximations, unique solvability.
@article{INTO_2018_156_a10,
     author = {T. K. Yuldashev},
     title = {Integro-differential equation with a higher-order two-dimensional {Whitham} operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a10/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Integro-differential equation with a higher-order two-dimensional Whitham operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 117
EP  - 125
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a10/
LA  - ru
ID  - INTO_2018_156_a10
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Integro-differential equation with a higher-order two-dimensional Whitham operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 117-125
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a10/
%G ru
%F INTO_2018_156_a10
T. K. Yuldashev. Integro-differential equation with a higher-order two-dimensional Whitham operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 117-125. http://geodesic.mathdoc.fr/item/INTO_2018_156_a10/

[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[2] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999

[3] Zamyshlyaeva A. A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. model. program., 7:2 (2014), 5–28 | Zbl

[4] Imanaliev M. I., Alekseenko S. N., “K teorii sistem nelineinykh integro-differentsialnykh uravnenii v chastnykh proizvodnykh tipa Uizema”, Dokl. RAN, 325:6 (1992), 111–115

[5] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differ. uravn., 23:3 (1989), 465–477

[6] Karimov Sh. T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Mat., 2017, no. 8, 27–41 | Zbl

[7] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differ. uravn., 52:12 (2016), 1666–1681 | MR | Zbl

[8] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Mat. sb., 117:2 (1982), 251–265 | MR | Zbl

[9] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973

[10] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zh. vychisl. mat. mat. fiz., 52:1 (2012), 112–123 | MR | Zbl

[11] Yuldashev T. K., “Ob obratnoi zadache dlya kvazilineinogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestn. Tomsk. un-ta. Mat. Mekh., 2012, no. 2, 56–62

[12] Yuldashev T. K., “Ob obratnoi zadache dlya sistemy kvazilineinykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Vestn. Yuzhno-Uralsk. un-ta. Ser. Mat. Mekh. Fiz., 6:11 (270) (2012), 35–41 | Zbl

[13] Yuldashev T. K., “Obobschennaya razreshimost smeshannoi zadachi dlya nelineinogo integro-differentsialnogo uravneniya vysokogo poryadka s vyrozhdennym yadrom”, Izv. in-ta tam. inform. Udmurt. un-ta, 50 (2017), 121–132 | Zbl

[14] Yuldashev T. K., “Ob odnoi nelokalnoi zadache dlya neodnorodnogo integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Uch. zap. Kazan. un-ta. Ser. fiz.-mat. nauki, 159:1 (2017), 88–99 | MR

[15] Yuldashev T. K., “Ob odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya v chastnykh proizvodnykh chetvertogo poryadka s vyrozhdennym yadrom”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obzory, 145, VINITI RAN, M., 2018, 95–109

[16] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obzory, 140, VINITI RAN, M., 2017, 43–49 | MR

[17] Benney D. J., Luke J. C., “Interactions of permanent waves of finite amplitude”, J. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl