Gevrey problem for a mixed parabolic equation with singular coefficients
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 18-29

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the unique solvability of the Gevrey problem for a mixed parabolic equation with singular coefficients in a band. We prove the existence and uniqueness of a solution to the problem stated. The uniqueness of a solution is proved by the method of energy integrals and the existence by methods of the theory of Volterra, Fredholm, and singular integral equations.
Keywords: Gevrey problem, mixed parabolic equation, uniqueness of solution
Mots-clés : singular coefficient, existence of solution.
@article{INTO_2018_156_a1,
     author = {A. O. Mamanazarov},
     title = {Gevrey problem for a mixed parabolic equation with singular coefficients},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {18--29},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/}
}
TY  - JOUR
AU  - A. O. Mamanazarov
TI  - Gevrey problem for a mixed parabolic equation with singular coefficients
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 18
EP  - 29
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/
LA  - ru
ID  - INTO_2018_156_a1
ER  - 
%0 Journal Article
%A A. O. Mamanazarov
%T Gevrey problem for a mixed parabolic equation with singular coefficients
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 18-29
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/
%G ru
%F INTO_2018_156_a1
A. O. Mamanazarov. Gevrey problem for a mixed parabolic equation with singular coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 18-29. http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/