Gevrey problem for a mixed parabolic equation with singular coefficients
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 18-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine the unique solvability of the Gevrey problem for a mixed parabolic equation with singular coefficients in a band. We prove the existence and uniqueness of a solution to the problem stated. The uniqueness of a solution is proved by the method of energy integrals and the existence by methods of the theory of Volterra, Fredholm, and singular integral equations.
Keywords:
Gevrey problem, mixed parabolic equation, uniqueness of solution
Mots-clés : singular coefficient, existence of solution.
Mots-clés : singular coefficient, existence of solution.
@article{INTO_2018_156_a1,
author = {A. O. Mamanazarov},
title = {Gevrey problem for a mixed parabolic equation with singular coefficients},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {18--29},
publisher = {mathdoc},
volume = {156},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/}
}
TY - JOUR AU - A. O. Mamanazarov TI - Gevrey problem for a mixed parabolic equation with singular coefficients JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 18 EP - 29 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/ LA - ru ID - INTO_2018_156_a1 ER -
%0 Journal Article %A A. O. Mamanazarov %T Gevrey problem for a mixed parabolic equation with singular coefficients %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 18-29 %V 156 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/ %G ru %F INTO_2018_156_a1
A. O. Mamanazarov. Gevrey problem for a mixed parabolic equation with singular coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 18-29. http://geodesic.mathdoc.fr/item/INTO_2018_156_a1/