An analog of the Cauchy problem for the inhomogeneous multidimensional polycaloric equation containing the Bessel operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula for solutions of an analog of the Cauchy problem for the inhomogeneous multidimensional polycaloric equation containing the Bessel operator is obtained. The construction of a solution is based on the application of the multidimensional Erdélyi–Kober operator of fractional order.
Keywords: Cauchy problem, equation polycaloric, Erdélyi–Kober operator, Bessel differential operator.
@article{INTO_2018_156_a0,
     author = {Shakhobiddin T. Karimov},
     title = {An analog of the {Cauchy} problem for the inhomogeneous multidimensional polycaloric equation containing the {Bessel} operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {156},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_156_a0/}
}
TY  - JOUR
AU  - Shakhobiddin T. Karimov
TI  - An analog of the Cauchy problem for the inhomogeneous multidimensional polycaloric equation containing the Bessel operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 17
VL  - 156
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_156_a0/
LA  - ru
ID  - INTO_2018_156_a0
ER  - 
%0 Journal Article
%A Shakhobiddin T. Karimov
%T An analog of the Cauchy problem for the inhomogeneous multidimensional polycaloric equation containing the Bessel operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-17
%V 156
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_156_a0/
%G ru
%F INTO_2018_156_a0
Shakhobiddin T. Karimov. An analog of the Cauchy problem for the inhomogeneous multidimensional polycaloric equation containing the Bessel operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 156 (2018), pp. 3-17. http://geodesic.mathdoc.fr/item/INTO_2018_156_a0/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, 2, Nauka, M., 1973

[2] Verenich I. I., “Vnutrennie otsenki reshenii parabolicheskikh uravnenii s operatorom Besselya”, Dokl. AN USSR, 1977, no. 11, 969–974 | MR | Zbl

[3] Gorodetskii V. V., Zhitaryuk I. V., Lavrenchuk V. P., Zadacha Koshi dlya lineinykh parabolicheskikh uravnenii s operatorom Besselya v space'akh obobschennykh funktsii tipa $S'$, Dep. v UkrINTEI 09.03.93. No. 38 Uk 93, Chernovits. un-t, Chernovtsy, 1993

[4] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnym operatorom Besselya”, Mat. sb., 36:2 (1955), 299–310

[5] Ivasishen S. D., Lavrenchuk V. P., “Ob integralnom predstavlenii reshenii parabolicheskoi sistemy s operatorom Besselya”, Nelin. granich. zadachi, 4 (1992), 19–25

[6] Ilin V. A., Sadovnichii V. A., Sendov B. Kh., Matematicheskii analiz. Prodolzhenie kursa, Izd-vo MGU, M., 1987 | MR

[7] Karimov Sh. T., “Novye svoistva oboschennogo operatora Erdeii—Kobera i ikh prilozheniya”, Dokl. AN RUZ, 2014, no. 5, 11–13

[8] Karimov Sh. T., “O nekotorykh obobscheniyakh svoistv operatora Erdeii—Kobera i ikh prilozheniya”, Vestn. KRAUNTs. Fiz.-mat. nauki, 2017, no. 2 (18), 20–40 | Zbl

[9] Kipriyanov I. A., Katrakhov V. V., Lyapin V. M., “O kraevykh zadachakh v oblasti obschego vida dlya singulyarnykh parabolicheskikh sistem uravnenii”, Dokl. AN SSSR, 230:6 (1976), 1271–1274 | MR | Zbl

[10] Krekhivskii V. V., “Teoremy edinstvennosti reshenii zadachi Koshi dlya uravnenii s operatorom Besselya”, Matematicheskoe modelirovanie fizicheskikh protsessov, In-t mat. AN USSR, Kiev, 1989, 82–86 | MR

[11] Krekhivskii V. V., Matiichuk M. I., “Fundamentalnye resheniya i zadacha Koshi dlya lineinykh parabolicheskikh sistem s operatorom Besselya”, Dokl. AN SSSR, 181:6 (1968), 1320–1323

[12] Krekhivskii V. V., Matiichuk M. I., “O kraevykh zadachakh dlya parabolicheskikh sistem s operatorom Besselya”, Dokl. AN SSSR, 139:4 (1971), 773–775

[13] Muravnik A. B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovr. mat. Fundam. napravl., 52 (2014), 3–141

[14] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001

[15] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. 1. Elementarnye funktsii, Fizmatlit, M., 2002 | MR

[16] Samko S. G., Kilbas A.A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[17] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985

[18] Chuprov I. F., Kaneva E. A., Mordvinov A. A., Uravneniya matematicheskoi fiziki s prilozheniyami k zadacham neftedobychi i truboprovodnogo transporta gaza, UGTU, Ukhta, 2004

[19] Arena O., “On a singular parabolic equation related to axially symmetric heat potentials”, Ann. Mat. Pura Appl., 105:1 (1975), 347–393 | DOI | MR | Zbl

[20] Colton D., “Cauchy's problem for a singular parabolic differential equation”, J. Differ. Equations, 8 (1970), 250–257 | DOI | MR | Zbl

[21] Karimov Sh. T., “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | DOI | MR | Zbl