On certain applications of the hyperbolic heat transfer equation and methods for its solution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

When creating new technological processes based on the use of high-intensity energy flows, it is necessary to take into account the finite speed of heat transfer. This can be done by using the hyperbolic heat transfer equation obtained by A. V. Lykov within the framework of nonequilibrium phenomenological thermodynamics as a consequence of a generalization of the Fourier law for flows and the equation of thermal balance. In previous works, V. N. Khankhasaev modeled the process of switching off an electric arc in a gas flow using this equation. In this paper, we present a mathematical model of this process including the period of stable burning of an electric arc until to the shutdown moment, which consists of the replacement of the strongly hyperbolic heat transfer equation by a hyperbolic-parabolic equation. For the mixed heat transfer equation obtained, we state certain boundary-value problems, solve them by numerical algorithms, and obtain temperature fields that are well consistent with the available experimental data.
Keywords: hyperbolic-parabolic equation, hyperbolic heat transfer equation, Navier–Stokes equation, heat balance.
Mots-clés : scheme of variable directions
@article{INTO_2018_155_a4,
     author = {V. N. Khankhasaev and E. V. Darmakheev},
     title = {On certain applications of the hyperbolic heat transfer equation and methods for its solution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {155},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/}
}
TY  - JOUR
AU  - V. N. Khankhasaev
AU  - E. V. Darmakheev
TI  - On certain applications of the hyperbolic heat transfer equation and methods for its solution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 89
EP  - 97
VL  - 155
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/
LA  - ru
ID  - INTO_2018_155_a4
ER  - 
%0 Journal Article
%A V. N. Khankhasaev
%A E. V. Darmakheev
%T On certain applications of the hyperbolic heat transfer equation and methods for its solution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 89-97
%V 155
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/
%G ru
%F INTO_2018_155_a4
V. N. Khankhasaev; E. V. Darmakheev. On certain applications of the hyperbolic heat transfer equation and methods for its solution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 89-97. http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/

[1] Borodyanskii G. Ya., “Relaksatsionnaya model dinamiki elektricheskoi dugi”, Fizika nizkotemperaturnoi plazmy, Tez. dokl. 7 Vsesoyuz. sessii nauch. soveta, Ulan-Ude, 1988, 19

[2] Bubnov V. A., “Molekulyarno-kineticheskoe obosnovanie uravneniya perenosa tepla”, Inzh. fiz. zh., 28:4 (1975), 670–676

[3] Buyantuev S. L., Khankhasaev V. N., “Ob odnom obobschenii uravnenii Nave—Stoksa v matematicheskikh modelyakh elektricheskoi dugi v sputnom potoke gaza v moment preryvaniya toka”, Elektrichestvo, 1996, no. 11, 17–23

[4] Buyantuev S. L., Khankhasaev V. N., “Chislennoe issledovanie nestatsionarnykh protsessov v nule toka”, Nestatsionarnye dugovye i prielektrodnye protsessy v elektricheskikh apparatakh i plazmotronakh, Sb. dokl. Vsesoyuz. semin. problemnogo soveta FNTs AN SSSR, IMM AN KazSSR, Alma-Ata, 1991, 29–36

[5] Danilenko V. A., Kudinov V. M., Makarenko A. S., Vliyanie effektov pamyati na obrazovanie dissipativnykh struktur pri bystroprotekayuschikh protsessakh, In-t elektrosvarki AN USSR, Kiev, 1983

[6] Dulnev G. N., Primenenie EVM dlya resheniya zadach teploobmena, Vysshaya shkola, M., 1990

[7] Kuvyrkin G. N., “Termodinamicheskii vyvod giperbolicheskogo uravneniya teploprovodnosti”, Teplofizika vysokikh temperatur, 25:1 (1987), 78–82

[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[9] Lykov A. V., Teplomassoobmen, Energiya, M., 1972

[10] Poltev A. I., Konstruktsii i raschet elegazovykh apparatov vysokogo napryazheniya, Energiya, L., 1979

[11] Romanova N. A., O skhodimosti raznostnykh skhem odnoi kraevoi zadachi dlya uravnenii smeshannogo tipa, Dis. kand. fiz-mat. nauk, Yakut. gos. un-t, Yakutsk, 1994

[12] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[13] Formalev V. F., Selin I. A., Kuznetsova E. L., “Vozniknovenie i rasprostranenie teplovykh voln v nelineinom anizotropnom prostranstve”, Izv. RAN. Energetika, 2010, no. 3, 136–141

[14] Khankhasaev V. N., Buyantuev S. L., “Chislennyi raschet odnoi matematicheskoi modeli elektricheskoi dugi v potoke gaza”, Energosberegayuschie i prirodookhrannye tekhnologii na Baikale, Sb. tr. mezhdunar. nauch.-prakt. konf., VSGTU, Ulan-Ude; BGU, 2001, 168–172

[15] Khankhasaev V. N., Darmakheev E. V., “Skhema peremennykh napravlenii chislennogo resheniya smeshannogo uravneniya teploprovodnosti”, Aktualnye voprosy veschestvennogo i funktsionalnogo analiza, Mat. semin. s mezhdunar. uchastiem, Ulan-Ude, 2015, 122–127

[16] Khankhasaev V. N., Mestnikova N. N., “Skhema peremennykh napravlenii dlya chislennogo resheniya giperbolo-parabolicheskogo uravneniya”, Kubaturnye formuly, metody Monte-Karlo i ikh prilozheniya, Sb. tr. mezhdunar. konf., In-t kosm. inform. tekhnol. SFU, Krasnoyarsk, 2011, 117–120

[17] Khankhasaev V. N., Mestnikova N. N., Khankhasaeva Ya. V., “Chislennoe reshenie giperbolo-parabolicheskogo uravneniya po skheme peremennykh napravlenii”, Innovatsionnye tekhnologii v nauke i obrazovanii, Sb. tr. mezhdunar. nauch.-prakt. konf., BGU, Ulan-Ude, 2011, 79–82

[18] Khankhasaev V. N., Mizhidon G. A., “Algoritm chislennogo rascheta smeshannogo uravneniya teploprovodnosti v odnomernom sluchae”, Matematika, ee prilozheniya i matematicheskoe obrazovanie, Mat. 6 Mezhdunar. konf. (Ulan-Ude, 2017), 357–359

[19] Shablovskii O. N., “Rasprostranenie ploskoi udarnoi teplovoi volny v nelineinoi srede”, Inzh. fiz. zh., 49:3 (1985), 436–443

[20] Shashkov A. G., Bubnov V. A., Yanovskii S. Yu., Volnovye yavleniya teploprovodnosti, URSS, M., 2004

[21] Cattaneo G., “Sur une forme de l’equation de la chauleur eliminent le paradoxe d’une propagation instance”, C. R. Acad. Sci., 247:4 (1958), 431–433 | MR

[22] Ragaller K., Egli W., Brand K., “Dielectric recovery of an axially blown SF$_6$-arc after current zero”, IEEE Trans. Plasma Sci., PS-10:3 (1982), 154–161 | DOI

[23] Vernotte P., “Les paradoxes de la theorie continue de l’equation de la chauleur”, C. R. Acad. Sci., 246:22 (1958), 3154–3155 | MR | Zbl