Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_155_a4, author = {V. N. Khankhasaev and E. V. Darmakheev}, title = {On certain applications of the hyperbolic heat transfer equation and methods for its solution}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {89--97}, publisher = {mathdoc}, volume = {155}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/} }
TY - JOUR AU - V. N. Khankhasaev AU - E. V. Darmakheev TI - On certain applications of the hyperbolic heat transfer equation and methods for its solution JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 89 EP - 97 VL - 155 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/ LA - ru ID - INTO_2018_155_a4 ER -
%0 Journal Article %A V. N. Khankhasaev %A E. V. Darmakheev %T On certain applications of the hyperbolic heat transfer equation and methods for its solution %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 89-97 %V 155 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/ %G ru %F INTO_2018_155_a4
V. N. Khankhasaev; E. V. Darmakheev. On certain applications of the hyperbolic heat transfer equation and methods for its solution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 89-97. http://geodesic.mathdoc.fr/item/INTO_2018_155_a4/
[1] Borodyanskii G. Ya., “Relaksatsionnaya model dinamiki elektricheskoi dugi”, Fizika nizkotemperaturnoi plazmy, Tez. dokl. 7 Vsesoyuz. sessii nauch. soveta, Ulan-Ude, 1988, 19
[2] Bubnov V. A., “Molekulyarno-kineticheskoe obosnovanie uravneniya perenosa tepla”, Inzh. fiz. zh., 28:4 (1975), 670–676
[3] Buyantuev S. L., Khankhasaev V. N., “Ob odnom obobschenii uravnenii Nave—Stoksa v matematicheskikh modelyakh elektricheskoi dugi v sputnom potoke gaza v moment preryvaniya toka”, Elektrichestvo, 1996, no. 11, 17–23
[4] Buyantuev S. L., Khankhasaev V. N., “Chislennoe issledovanie nestatsionarnykh protsessov v nule toka”, Nestatsionarnye dugovye i prielektrodnye protsessy v elektricheskikh apparatakh i plazmotronakh, Sb. dokl. Vsesoyuz. semin. problemnogo soveta FNTs AN SSSR, IMM AN KazSSR, Alma-Ata, 1991, 29–36
[5] Danilenko V. A., Kudinov V. M., Makarenko A. S., Vliyanie effektov pamyati na obrazovanie dissipativnykh struktur pri bystroprotekayuschikh protsessakh, In-t elektrosvarki AN USSR, Kiev, 1983
[6] Dulnev G. N., Primenenie EVM dlya resheniya zadach teploobmena, Vysshaya shkola, M., 1990
[7] Kuvyrkin G. N., “Termodinamicheskii vyvod giperbolicheskogo uravneniya teploprovodnosti”, Teplofizika vysokikh temperatur, 25:1 (1987), 78–82
[8] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[9] Lykov A. V., Teplomassoobmen, Energiya, M., 1972
[10] Poltev A. I., Konstruktsii i raschet elegazovykh apparatov vysokogo napryazheniya, Energiya, L., 1979
[11] Romanova N. A., O skhodimosti raznostnykh skhem odnoi kraevoi zadachi dlya uravnenii smeshannogo tipa, Dis. kand. fiz-mat. nauk, Yakut. gos. un-t, Yakutsk, 1994
[12] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976
[13] Formalev V. F., Selin I. A., Kuznetsova E. L., “Vozniknovenie i rasprostranenie teplovykh voln v nelineinom anizotropnom prostranstve”, Izv. RAN. Energetika, 2010, no. 3, 136–141
[14] Khankhasaev V. N., Buyantuev S. L., “Chislennyi raschet odnoi matematicheskoi modeli elektricheskoi dugi v potoke gaza”, Energosberegayuschie i prirodookhrannye tekhnologii na Baikale, Sb. tr. mezhdunar. nauch.-prakt. konf., VSGTU, Ulan-Ude; BGU, 2001, 168–172
[15] Khankhasaev V. N., Darmakheev E. V., “Skhema peremennykh napravlenii chislennogo resheniya smeshannogo uravneniya teploprovodnosti”, Aktualnye voprosy veschestvennogo i funktsionalnogo analiza, Mat. semin. s mezhdunar. uchastiem, Ulan-Ude, 2015, 122–127
[16] Khankhasaev V. N., Mestnikova N. N., “Skhema peremennykh napravlenii dlya chislennogo resheniya giperbolo-parabolicheskogo uravneniya”, Kubaturnye formuly, metody Monte-Karlo i ikh prilozheniya, Sb. tr. mezhdunar. konf., In-t kosm. inform. tekhnol. SFU, Krasnoyarsk, 2011, 117–120
[17] Khankhasaev V. N., Mestnikova N. N., Khankhasaeva Ya. V., “Chislennoe reshenie giperbolo-parabolicheskogo uravneniya po skheme peremennykh napravlenii”, Innovatsionnye tekhnologii v nauke i obrazovanii, Sb. tr. mezhdunar. nauch.-prakt. konf., BGU, Ulan-Ude, 2011, 79–82
[18] Khankhasaev V. N., Mizhidon G. A., “Algoritm chislennogo rascheta smeshannogo uravneniya teploprovodnosti v odnomernom sluchae”, Matematika, ee prilozheniya i matematicheskoe obrazovanie, Mat. 6 Mezhdunar. konf. (Ulan-Ude, 2017), 357–359
[19] Shablovskii O. N., “Rasprostranenie ploskoi udarnoi teplovoi volny v nelineinoi srede”, Inzh. fiz. zh., 49:3 (1985), 436–443
[20] Shashkov A. G., Bubnov V. A., Yanovskii S. Yu., Volnovye yavleniya teploprovodnosti, URSS, M., 2004
[21] Cattaneo G., “Sur une forme de l’equation de la chauleur eliminent le paradoxe d’une propagation instance”, C. R. Acad. Sci., 247:4 (1958), 431–433 | MR
[22] Ragaller K., Egli W., Brand K., “Dielectric recovery of an axially blown SF$_6$-arc after current zero”, IEEE Trans. Plasma Sci., PS-10:3 (1982), 154–161 | DOI
[23] Vernotte P., “Les paradoxes de la theorie continue de l’equation de la chauleur”, C. R. Acad. Sci., 246:22 (1958), 3154–3155 | MR | Zbl