Theoretical foundations of the study of a certain class of hybrid systems of differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 38-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider boundary-value problems for a new class of hybrid systems of differential equations whose coefficients contain the Dirac delta-function. Hybrid systems are systems that contain both ordinary and partial differential equations; such systems appear, for example, when equations of motion of mechanical systems of rigid bodies attached to a rod by elastic bonds are derived from the Hamilton–Ostrogradsky variational principle. We present examples that lead to such systems and introduce the notions of generalized solutions and eigenvalues of a boundary-value problem. We also compare results of numerical simulations based on methods proposed in this paper with results obtained by previously known methods and show that our approach is reliable and universal.
Keywords: eigenvalue, boundary-value problem, hybrid system, differential equation, frequency equation.
@article{INTO_2018_155_a2,
     author = {A. D. Mizhidon},
     title = {Theoretical foundations of the study of a certain class of hybrid systems of differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--64},
     publisher = {mathdoc},
     volume = {155},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/}
}
TY  - JOUR
AU  - A. D. Mizhidon
TI  - Theoretical foundations of the study of a certain class of hybrid systems of differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 38
EP  - 64
VL  - 155
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/
LA  - ru
ID  - INTO_2018_155_a2
ER  - 
%0 Journal Article
%A A. D. Mizhidon
%T Theoretical foundations of the study of a certain class of hybrid systems of differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 38-64
%V 155
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/
%G ru
%F INTO_2018_155_a2
A. D. Mizhidon. Theoretical foundations of the study of a certain class of hybrid systems of differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 38-64. http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/

[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978

[2] Barguev S. G., Dashibalzhirov Ch. B., Mizhidon A. D., “K issledovaniyu vynuzhdennykh kolebanii uprugoi mekhanicheskoi sistemoi kaskadnogo tipa”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2008, no. 9, 151–155

[3] Barguev S. G., Mizhidon A. D., “Opredelenie sobstvennykh chastot prosteishei mekhanicheskoi sistemy na uprugom osnovanii”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2009, no. 9, 58–63

[4] Barguev S. G., Eltoshkina E. V., Mizhidon A. D., Tsytsyrenova M. Zh., “Issledovanie vozmozhnosti gasheniya kolebanii $n$ mass, ustanovlennykh na uprugom sterzhne”, Sovr. tekhnol. Sist. anal. Model., 2010, no. 4 (28), 78–84

[5] Barguev S. G., Mizhidon A. D., Tsytsyrenova M. Zh., “Sravnitelnyi analiz k raschetu sobstvennykh chastot kolebanii sterzhnya s uprugo prisoedinennoi sistemoi s dvumya stepenyami svobody”, Mat. 5 Mezhdunar. konf. «Problemy mekhaniki sovremennykh mashin», Izd-vo VSGUTU, Ulan-Ude, 2012, 186–189

[6] Barguev S. G., Mizhidon A. D., “Vynuzhdennye kolebaniya konsolnoi balki s massoi i uprugo zakreplennym kontsom”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2014, no. 9(1), 18–21

[7] Bolotin V. V., Blekhman I. I., Dimentberg F. M., Kolesnikov K. S., Lavendel E. E., Genkin D. M., Frolov K. V., Vibratsii v tekhnike, Spravochnik v 6 tt., Mashinostroenie, M., 1978

[8] Bokhner S., Lektsii ob integrale Fure, Fizmatgiz, M., 1962

[9] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[10] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979

[11] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958

[12] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959

[13] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR

[14] Dabaeva M. Zh., Eltoshkina E. V., Garmaeva V. V., “Teoreticheskie osnovy postroeniya algoritmicheskogo obespecheniya issledovaniya sobstvennykh kolebanii sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Mat. V Mezhdunar. konf. «Matematika, ee prilozheniya i matematicheskoe obrazovanie», Izd-vo VSGUTU, Ulan-Ude, 2014, 94–99

[15] Dabaeva M. Zh., “Postroenie chastotnykh uravnenii sistemy tverdykh tel, prikreplennykh k uprugomu sterzhnyu”, Mat. VI Mezhdunar. konf. «Problemy mekhaniki sovremennykh mashin», Izd-vo VSGUTU, Ulan-Ude, 2015, 132–137

[16] Dirak P., Osnovy kvantovoi mekhaniki, Gostekhizdat, M., 1932

[17] Markeev A. P., Teoreticheskaya mekhanika, CheRo, M., 1999

[18] Mizhidon A. D., “Issledovanie sistem vibroizolyatsii na uprugom osnovanii”, Tez. dokl. 2 Vsesoyuz. konf. «Problemy vibroizolyatsii mashin i priborov», Irkutsk, Moskva, 1989, 113–114

[19] Mizhidon A. D., Arkhipov S. V., Fedorov M. E., “Matematicheskie modeli mekhanicheskikh sistem, opisyvaemykh gibridnymi sistemami uravnenii”, Sb. nauch. statei. VSGTU. Ser. fiz.-mat. nauki, Izd-vo VSGTU, Ulan-Ude, 1999, 52–61

[20] Mizhidon A. D., Barguev S. G., “O vynuzhdennykh kolebaniyakh mekhanicheskoi sistemy ustanovlennoi na uprugom sterzhne”, Sovr. tekhnol. Sist. anal. Model., 2004, no. 1, 32–34

[21] Mizhidon A. D., Barguev S. G., Lebedeva N. V., “K issledovaniyu vibrozaschitnoi sistemy s uprugim osnovaniem”, Sovr. tekhnol. Sist. anal. Model., 2009, no. 2 (22), 13–20

[22] Mizhidon A. D., Oshorov B. B., Barguev S. G., “Obobschennoe reshenie odnoi gibridnoi sistemy differentsialnykh uravnenii”, Tr. Mezhdunar. konf. «Kubaturnye formuly i differentsialnye uravneniya», Izd-vo VSGUTU, Ulan-Ude, 2009, 251–258

[23] Mizhidon A. D., Barguev S. G., “O sobstvennykh kolebaniyakh mekhanicheskoi sistemy kaskadnogo tipa, ustanovlennoi na uprugom sterzhne”, Vestn. VSGTU, 2010, no. 1, 26–33

[24] Mizhidon A. D., Barguev S. G., “Kraevaya zadacha dlya odnoi gibridnoi sistemy differentsialnykh uravnenii”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2013, no. 9, 130–137

[25] Mizhidon A. D., Dabaeva (Tsytsyrenova) M. Zh., “Obobschennaya matematicheskaya model sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Vestn. VSGTU, 2013, no. 6, 5–12

[26] Mizhidon A. D., Dabaeva M. Zh., “Ustanovivshiesya vynuzhdennye kolebaniya sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2015, no. 9, 68–75

[27] Mizhidon A. D., Dabaeva M. Zh., “Matematicheskoe modelirovanie, uchet dempfiruyuschikh svoistv uprugikh svyazei v obobschennoi matematicheskoi modeli sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Vestn. VSGUTU, 2015, no. 2 (53), 10–17 | MR

[28] Mizhidon A. D., Mizhidon K. A., “Sobstvennye znacheniya dlya odnoi sistemy gibridnykh differentsialnykh uravnenii”, Sib. elektron. mat. izv., 13 (2016), 911–922 | MR | Zbl

[29] Mizhidon A. D., Kharakhinov A. V., “K issledovaniyu kraevoi zadachi dlya balki Timoshenko s uprugo prikreplennym telom s dvumya stepenyami svobody”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2016, no. 1, 88–101

[30] Mizhidon A. D., Kharakhinov A. V., “Chastotnoe uravnenie dlya balki Timoshenko s uprugo prikreplennym telom s dvumya stepenyami svobody”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2016, no. 4, 61–68

[31] Mizhidon A. D., Teoreticheskie osnovy variatsionnogo ischisleniya, Izd-vo VSGUTU, Ulan-Ude, 2012

[32] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[33] Cha P. D., “Free vibrations of a uniform beam with multiple elastically mounted two-degree-of-freedom systems”, J. Sound Vibration, 307:1-2 (2007), 386–392 | DOI

[34] Dirak P., “The physical interpretation of quantum dynamics”, Proc. Roy. Soc. Sec. A., 113 (1926-1927), 621–641 | MR

[35] Kukla S., Posiadala B., “Free vibrations of beams with elastically mounted masses”, J. Sound Vibration, 175:4 (1994), 557–564 | DOI | Zbl

[36] Lin H. Y., Tsai Y. C., “Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems”, J. Sound Vibration, 302:3 (2007), 442–456 | DOI

[37] Meirovitch L., Fundamental of vibrations, McGraw-Hill, New York, 2001

[38] Mizhidon A. D., Barguev S. G., “Research of own vibrations for one hybrid system of the differential equations”, Zbor. Radova Konf. MIT, 2013, 464–470

[39] Mizhidon A. D., “Modelling of mechanical systems basing on interconnected differential and partial differential equations”, Vestn. YuUrGU. Ser. mat. model. program., 10:1 (2017), 22–34 | Zbl

[40] Naguleswaran S., “Transverse vibration of an Euler–Bernoulli uniform beam carrying several particles”, Int. J. Mech. Sci., 44:12 (2002), 2463–2478 | DOI | Zbl

[41] Naguleswaran S., “Transverse vibration of an Euler–Bernoulli uniform beam on up a five resilient supports including end”, J. Sound Vibration, 261:2 (2003), 372–384 | DOI

[42] Riesz M., “L'integral de Riemann–Liouville et le probleme de Cauchy”, Acta Math., 81 (1949), 1–222 | DOI | MR

[43] Schwartz L., Theorie des distributions, Hermann, Paris, 1951 | MR | Zbl

[44] Sobolev S. L., “Methode nouvelle a resoudre le problem de Cauchy pour les ewuations lineares hyperboliques normales”, Mat. sb., 1:43 (1936), 39–72

[45] Su H., Banerjee J. R., “Exact natural frequencies of structures consisting of two part beam-mass systems”, Struct. Eng. Mech., 19:5 (2005), 551–566 | DOI

[46] Wu J. J., Whittaker A. R., “The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-DOF spring-mass systems”, J. Sound Vibration, 227:2 (1999), 361–381 | DOI

[47] Wu J. S., “Alternative approach for free vibration of beams carrying anumber of two-degree of freedom spring-mass systems”, J. Struct. Eng., 128 (2002), 1604–1616 | DOI

[48] Wu J. S., Chou H. M., “A new approach for determining the natural frequancies and mode shape of a uniform beam carrying any number of spring masses”, J. Sound Vibration, 220:3 (1999), 451–468 | DOI

[49] Wu J.-S., Chen D.-W., “Dynamic analysis of uniform cantilever beam carrying a number of elastically mounted point masses with dampers”, J. Sound Vibration, 229:3 (2000), 549–578 | DOI