Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2018_155_a2, author = {A. D. Mizhidon}, title = {Theoretical foundations of the study of a certain class of hybrid systems of differential equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {38--64}, publisher = {mathdoc}, volume = {155}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/} }
TY - JOUR AU - A. D. Mizhidon TI - Theoretical foundations of the study of a certain class of hybrid systems of differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2018 SP - 38 EP - 64 VL - 155 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/ LA - ru ID - INTO_2018_155_a2 ER -
%0 Journal Article %A A. D. Mizhidon %T Theoretical foundations of the study of a certain class of hybrid systems of differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2018 %P 38-64 %V 155 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/ %G ru %F INTO_2018_155_a2
A. D. Mizhidon. Theoretical foundations of the study of a certain class of hybrid systems of differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 38-64. http://geodesic.mathdoc.fr/item/INTO_2018_155_a2/
[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978
[2] Barguev S. G., Dashibalzhirov Ch. B., Mizhidon A. D., “K issledovaniyu vynuzhdennykh kolebanii uprugoi mekhanicheskoi sistemoi kaskadnogo tipa”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2008, no. 9, 151–155
[3] Barguev S. G., Mizhidon A. D., “Opredelenie sobstvennykh chastot prosteishei mekhanicheskoi sistemy na uprugom osnovanii”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2009, no. 9, 58–63
[4] Barguev S. G., Eltoshkina E. V., Mizhidon A. D., Tsytsyrenova M. Zh., “Issledovanie vozmozhnosti gasheniya kolebanii $n$ mass, ustanovlennykh na uprugom sterzhne”, Sovr. tekhnol. Sist. anal. Model., 2010, no. 4 (28), 78–84
[5] Barguev S. G., Mizhidon A. D., Tsytsyrenova M. Zh., “Sravnitelnyi analiz k raschetu sobstvennykh chastot kolebanii sterzhnya s uprugo prisoedinennoi sistemoi s dvumya stepenyami svobody”, Mat. 5 Mezhdunar. konf. «Problemy mekhaniki sovremennykh mashin», Izd-vo VSGUTU, Ulan-Ude, 2012, 186–189
[6] Barguev S. G., Mizhidon A. D., “Vynuzhdennye kolebaniya konsolnoi balki s massoi i uprugo zakreplennym kontsom”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2014, no. 9(1), 18–21
[7] Bolotin V. V., Blekhman I. I., Dimentberg F. M., Kolesnikov K. S., Lavendel E. E., Genkin D. M., Frolov K. V., Vibratsii v tekhnike, Spravochnik v 6 tt., Mashinostroenie, M., 1978
[8] Bokhner S., Lektsii ob integrale Fure, Fizmatgiz, M., 1962
[9] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[10] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979
[11] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958
[12] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959
[13] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR
[14] Dabaeva M. Zh., Eltoshkina E. V., Garmaeva V. V., “Teoreticheskie osnovy postroeniya algoritmicheskogo obespecheniya issledovaniya sobstvennykh kolebanii sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Mat. V Mezhdunar. konf. «Matematika, ee prilozheniya i matematicheskoe obrazovanie», Izd-vo VSGUTU, Ulan-Ude, 2014, 94–99
[15] Dabaeva M. Zh., “Postroenie chastotnykh uravnenii sistemy tverdykh tel, prikreplennykh k uprugomu sterzhnyu”, Mat. VI Mezhdunar. konf. «Problemy mekhaniki sovremennykh mashin», Izd-vo VSGUTU, Ulan-Ude, 2015, 132–137
[16] Dirak P., Osnovy kvantovoi mekhaniki, Gostekhizdat, M., 1932
[17] Markeev A. P., Teoreticheskaya mekhanika, CheRo, M., 1999
[18] Mizhidon A. D., “Issledovanie sistem vibroizolyatsii na uprugom osnovanii”, Tez. dokl. 2 Vsesoyuz. konf. «Problemy vibroizolyatsii mashin i priborov», Irkutsk, Moskva, 1989, 113–114
[19] Mizhidon A. D., Arkhipov S. V., Fedorov M. E., “Matematicheskie modeli mekhanicheskikh sistem, opisyvaemykh gibridnymi sistemami uravnenii”, Sb. nauch. statei. VSGTU. Ser. fiz.-mat. nauki, Izd-vo VSGTU, Ulan-Ude, 1999, 52–61
[20] Mizhidon A. D., Barguev S. G., “O vynuzhdennykh kolebaniyakh mekhanicheskoi sistemy ustanovlennoi na uprugom sterzhne”, Sovr. tekhnol. Sist. anal. Model., 2004, no. 1, 32–34
[21] Mizhidon A. D., Barguev S. G., Lebedeva N. V., “K issledovaniyu vibrozaschitnoi sistemy s uprugim osnovaniem”, Sovr. tekhnol. Sist. anal. Model., 2009, no. 2 (22), 13–20
[22] Mizhidon A. D., Oshorov B. B., Barguev S. G., “Obobschennoe reshenie odnoi gibridnoi sistemy differentsialnykh uravnenii”, Tr. Mezhdunar. konf. «Kubaturnye formuly i differentsialnye uravneniya», Izd-vo VSGUTU, Ulan-Ude, 2009, 251–258
[23] Mizhidon A. D., Barguev S. G., “O sobstvennykh kolebaniyakh mekhanicheskoi sistemy kaskadnogo tipa, ustanovlennoi na uprugom sterzhne”, Vestn. VSGTU, 2010, no. 1, 26–33
[24] Mizhidon A. D., Barguev S. G., “Kraevaya zadacha dlya odnoi gibridnoi sistemy differentsialnykh uravnenii”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2013, no. 9, 130–137
[25] Mizhidon A. D., Dabaeva (Tsytsyrenova) M. Zh., “Obobschennaya matematicheskaya model sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Vestn. VSGTU, 2013, no. 6, 5–12
[26] Mizhidon A. D., Dabaeva M. Zh., “Ustanovivshiesya vynuzhdennye kolebaniya sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2015, no. 9, 68–75
[27] Mizhidon A. D., Dabaeva M. Zh., “Matematicheskoe modelirovanie, uchet dempfiruyuschikh svoistv uprugikh svyazei v obobschennoi matematicheskoi modeli sistemy tverdykh tel, ustanovlennykh na uprugom sterzhne”, Vestn. VSGUTU, 2015, no. 2 (53), 10–17 | MR
[28] Mizhidon A. D., Mizhidon K. A., “Sobstvennye znacheniya dlya odnoi sistemy gibridnykh differentsialnykh uravnenii”, Sib. elektron. mat. izv., 13 (2016), 911–922 | MR | Zbl
[29] Mizhidon A. D., Kharakhinov A. V., “K issledovaniyu kraevoi zadachi dlya balki Timoshenko s uprugo prikreplennym telom s dvumya stepenyami svobody”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2016, no. 1, 88–101
[30] Mizhidon A. D., Kharakhinov A. V., “Chastotnoe uravnenie dlya balki Timoshenko s uprugo prikreplennym telom s dvumya stepenyami svobody”, Vestn. Buryat. gos. un-ta. Mat. Inform., 2016, no. 4, 61–68
[31] Mizhidon A. D., Teoreticheskie osnovy variatsionnogo ischisleniya, Izd-vo VSGUTU, Ulan-Ude, 2012
[32] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR
[33] Cha P. D., “Free vibrations of a uniform beam with multiple elastically mounted two-degree-of-freedom systems”, J. Sound Vibration, 307:1-2 (2007), 386–392 | DOI
[34] Dirak P., “The physical interpretation of quantum dynamics”, Proc. Roy. Soc. Sec. A., 113 (1926-1927), 621–641 | MR
[35] Kukla S., Posiadala B., “Free vibrations of beams with elastically mounted masses”, J. Sound Vibration, 175:4 (1994), 557–564 | DOI | Zbl
[36] Lin H. Y., Tsai Y. C., “Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems”, J. Sound Vibration, 302:3 (2007), 442–456 | DOI
[37] Meirovitch L., Fundamental of vibrations, McGraw-Hill, New York, 2001
[38] Mizhidon A. D., Barguev S. G., “Research of own vibrations for one hybrid system of the differential equations”, Zbor. Radova Konf. MIT, 2013, 464–470
[39] Mizhidon A. D., “Modelling of mechanical systems basing on interconnected differential and partial differential equations”, Vestn. YuUrGU. Ser. mat. model. program., 10:1 (2017), 22–34 | Zbl
[40] Naguleswaran S., “Transverse vibration of an Euler–Bernoulli uniform beam carrying several particles”, Int. J. Mech. Sci., 44:12 (2002), 2463–2478 | DOI | Zbl
[41] Naguleswaran S., “Transverse vibration of an Euler–Bernoulli uniform beam on up a five resilient supports including end”, J. Sound Vibration, 261:2 (2003), 372–384 | DOI
[42] Riesz M., “L'integral de Riemann–Liouville et le probleme de Cauchy”, Acta Math., 81 (1949), 1–222 | DOI | MR
[43] Schwartz L., Theorie des distributions, Hermann, Paris, 1951 | MR | Zbl
[44] Sobolev S. L., “Methode nouvelle a resoudre le problem de Cauchy pour les ewuations lineares hyperboliques normales”, Mat. sb., 1:43 (1936), 39–72
[45] Su H., Banerjee J. R., “Exact natural frequencies of structures consisting of two part beam-mass systems”, Struct. Eng. Mech., 19:5 (2005), 551–566 | DOI
[46] Wu J. J., Whittaker A. R., “The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-DOF spring-mass systems”, J. Sound Vibration, 227:2 (1999), 361–381 | DOI
[47] Wu J. S., “Alternative approach for free vibration of beams carrying anumber of two-degree of freedom spring-mass systems”, J. Struct. Eng., 128 (2002), 1604–1616 | DOI
[48] Wu J. S., Chou H. M., “A new approach for determining the natural frequancies and mode shape of a uniform beam carrying any number of spring masses”, J. Sound Vibration, 220:3 (1999), 451–468 | DOI
[49] Wu J.-S., Chen D.-W., “Dynamic analysis of uniform cantilever beam carrying a number of elastically mounted point masses with dampers”, J. Sound Vibration, 229:3 (2000), 549–578 | DOI