Classification and applications of randomized functional numerical algorithms for the solution of second-kind Fredholm integral equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systematization of numerical randomized functional algorithms for approximation of solutions to second-kind Fredholm integral equation is performed in this paper. Three types of algorithms are emphasized: projection algorithms, grid algorithms, and projection-grid algorithms. Disadvantages of grid algorithms that require calculation of values of the kernel of integral equations at fixed points are revealed (practically, the kernels of equation have integrable singularities and this calculation is impossible). Thus, for applied problems related to the solution of second-kind Fredholm integral equations, projection or projection-grid randomized algorithms are more convenient.
Keywords: second-kind Fredholm integral equation, numerical solution, randomized algorithm, projection algorithm, grid algorithm, computational kernel.
@article{INTO_2018_155_a0,
     author = {A. V. Voitishek},
     title = {Classification and applications of randomized functional numerical algorithms for the solution of second-kind {Fredholm} integral equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {155},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_155_a0/}
}
TY  - JOUR
AU  - A. V. Voitishek
TI  - Classification and applications of randomized functional numerical algorithms for the solution of second-kind Fredholm integral equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 3
EP  - 19
VL  - 155
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_155_a0/
LA  - ru
ID  - INTO_2018_155_a0
ER  - 
%0 Journal Article
%A A. V. Voitishek
%T Classification and applications of randomized functional numerical algorithms for the solution of second-kind Fredholm integral equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 3-19
%V 155
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_155_a0/
%G ru
%F INTO_2018_155_a0
A. V. Voitishek. Classification and applications of randomized functional numerical algorithms for the solution of second-kind Fredholm integral equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Mathematical Analysis, Tome 155 (2018), pp. 3-19. http://geodesic.mathdoc.fr/item/INTO_2018_155_a0/

[1] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[2] Berkovskii N. A., Modernizatsiya polustatisticheskogo metoda chislennogo resheniya integralnykh uravnenii, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Sankt-Peterburg, 2006

[3] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986

[4] Bulgakova T. E., Voitishek A. V., “Uslovnaya optimizatsiya randomizirovannogo iteratsionnogo metoda”, Zh. vychisl. mat. mat. fiz., 49:7 (2009), 1148–1157 | MR | Zbl

[5] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[6] Voitishek A. V., Funktsionalnye otsenki metoda Monte-Karlo, NGU, Novosibirsk, 2007

[7] Voitishek A. V., “Randomizirovannye iteratsionnye chislennye modeli i algoritmy”, LAP LAMBERT Academic Publishing RU, 2017 | Zbl

[8] Ivanov V. M., Kulchitskii O. Yu., “Metod chislennogo resheniya integralnykh uravnenii na sluchainoi setke”, Differ. uravn., 26:2 (1990), 333–341 | MR

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984

[10] Konovalov A. N., Vvedenie v vychislitelnye metody lineinoi algebry, Nauka, Novosibirsk, 1993

[11] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1980

[12] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[13] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR

[14] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR

[15] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Akademiya, M., 2006

[16] Mikhailov G. A., Tracheva N. V., Ukhinov S. A., “Randomizirovannyi proektsionnyi metod dlya otsenki uglovykh raspredelenii polyarizovannogo izlucheniya na osnove chislennogo statisticheskogo modelirovaniya”, Zh. vychisl. mat. mat. fiz., 56:9 (2016), 1560–1570 | DOI | Zbl

[17] Ramazanov M. D., Rakhmatullin D. Ya., Valeeva L. Z., Bannikova E. L., “Reshenie integralnykh uravnenii na mnogoprotsessornykh vychislitelnykh sistemakh”, Zh. Sib. Federaln. un-ta. Tekhnika i tekhnologii, 2:1 (2009), 69–87

[18] Rogazinskii S. V., “Statisticheskoe modelirovanie na osnove proektsionnogo metoda dlya nelineinogo uravneniya Boltsmana”, Tez. konf. «Marchukovskie chteniya–2017», Omega-Print, Novosibirsk, 2017, 82

[19] Sabelfeld K. K., Metody Monte-Karlo v kraevykh zadachakh, Nauka, M., 1989

[20] Frolov A. S., Chentsov N. N., “Ispolzovanie zavisimykh ispytanii v metode Monte-Karlo dlya polucheniya gladkikh krivykh”, Tr. Vsesoyuz. soveschaniya po teorii veroyatnostei i matematicheskoi statistike (Vilnyus, 1962), 425–437 | Zbl

[21] Shkarupa E. V., Voytishek A. V., “Convergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodes”, J. Statist. Planning Inference, 85 (2000), 199–211 | DOI | MR | Zbl