Construction of a Logical-Algebraic Corrector for Increasing Adaptive Properties of the $\Sigma\Pi$-Neuron
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of constructing a correction algorithm for increasing adaptive properties of the $\Sigma\Pi$-neuron, based solely on the structure of the $\Sigma\Pi$-neuron itself. The logical-algebraic method of data analysis is used for the construction of the corrector. Comparison of advantages of the neural-network approach and the logical-algebraic method leads to the conclusion that the combined approach to the organization of neural networks improves their efficiency and allows one to state rules that reveal hidden patterns in a given subject area and thus to improve the quality of the recognition system.
Mots-clés : $\Sigma\Pi$-neuron, classifier
Keywords: algorithm, corrector, predicate, disjunctive normal form, logical function.
@article{INTO_2018_154_a9,
     author = {L. A. Lyutikova},
     title = {Construction of a {Logical-Algebraic} {Corrector} for {Increasing} {Adaptive} {Properties} of the $\Sigma\Pi${-Neuron}},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {154},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2018_154_a9/}
}
TY  - JOUR
AU  - L. A. Lyutikova
TI  - Construction of a Logical-Algebraic Corrector for Increasing Adaptive Properties of the $\Sigma\Pi$-Neuron
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2018
SP  - 81
EP  - 88
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2018_154_a9/
LA  - ru
ID  - INTO_2018_154_a9
ER  - 
%0 Journal Article
%A L. A. Lyutikova
%T Construction of a Logical-Algebraic Corrector for Increasing Adaptive Properties of the $\Sigma\Pi$-Neuron
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2018
%P 81-88
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2018_154_a9/
%G ru
%F INTO_2018_154_a9
L. A. Lyutikova. Construction of a Logical-Algebraic Corrector for Increasing Adaptive Properties of the $\Sigma\Pi$-Neuron. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference “Actual Problems of Applied Mathematics and Physics,” Kabardino-Balkaria, Nalchik, May 17–21, 2017, Tome 154 (2018), pp. 81-88. http://geodesic.mathdoc.fr/item/INTO_2018_154_a9/

[1] Vorontsov K. V., “Optimizatsionnye metody lineinoi i monotonnoi korrektsii v algebraicheskom podkhode k probleme raspoznavaniya”, Zh. vychisl. mat. mat. fiz., 40:1 (2000), 166–-176 | MR | Zbl

[2] Gridin V. N., Solodovnikov V. I., “Sovmestnoe ispolzovanie neirosetevykh tekhnologii i derevev reshenii dlya poiska logicheskikh zakonomernostei”, Informatsionnye tekhnologii i nanotekhnologii, Cb. trudov III Mezhdunarodnoi konf. i molodezhnoi shkoly, Samar. nats. issl. un-t im. akademika S. P. Koroleva, 2017, 1763–1769

[3] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibern., 33 (1978), 5–68 | Zbl

[4] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Problemy prikladnoi matematiki i informatiki, Sb. statei, 1987, 187–-198 | Zbl

[5] Lyutikova L. A., Modelirovanie i minimizatsiya baz znanii v terminakh mnogoznachnoi logiki predikatov, NII PMA KBNTs RAN, Nalchik, 2006

[6] Lyutikova L. A., “Ispolzovanie matematicheskoi logiki s peremennoi znachnost pri modelirovanii sistem znanii”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 2008, no. 6 (65), 20–27

[7] Lyutikova L. A., Shmatova E. V., “Analiz i sintez algoritmov raspoznavaniya obrazov s ispolzovaniem peremenno-znachnoi logiki”, Inform. tekhnol., 22:4 (2016), 292–297 | MR

[8] Timofeev A. V., Lyutikova L. A., “Razvitie i primenenie mnogoznachnykh logik i setevykh potokov v intellektualnykh sistemakh”, Tr. SPII RAN, 2005, no. 2, 114–126

[9] Timofeev A. V., Pshibikhov V. Kh., “Algoritmy obucheniya i minimizatsii slozhnosti polinomialnykh raspoznayuschikh sistem”, Izv. AN SSSR. Tekhn. kibern., 1974, no. 7, 214–217

[10] Shibzukhov Z. M., “O nekotorykh konstruktivnykh i korrektnykh klassakh algebraicheskikh $\Sigma\Pi$-algoritmov”, Dokl. RAN, 432:4 (2010), 465–468 | MR | Zbl

[11] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 2001 | MR

[12] Pap E., “Pseudo-analysis as a mathematical base for soft computing”, Soft Comput., 1 (1997), 61–68 | DOI

[13] Shibzukhov Z. M., “Correct aggregation operations with algorithms”, Pattern Recogn. Image Anal., 24:3 (2014), 377–-382 | DOI